Значение периодического закона. Периодический закон д. И. Менделеева и его значение для науки Какое значение периодического закона и периодической системы

6. Периодический закон и периодическая система д.И. Менделеева Структура периодической системы (период, группа, подгруппа). Зна­чение периодического закона и периодической системы.

Периодический закон Д. И. Менделеева: Свойства простых тел, а также формы и свойства соеди­ нений элементов находятся в периодической зависимости от величины атомных весов элементов.(Свойства эл-тов находяхтся в периодической зависимости от заряда атомов их ядер).

Периодическая система элементов. Ряды элементов, в пре­делах которых свойства изменяются последовательно, как, напри­мер, ряд из восьми элементов от лития до неона или от натрия до аргона, Менделеев назвал периодами. Если напишем эти два периода один под другим так, чтобы под литием находился натрий, а под неоном - аргон, то получим следующее расположение эле­ментов:

При таком расположении в вертикальные столбцы попадают элементы, сходные по своим свойствам и обладающие одинаковой валентностью, например, литий и натрий, бериллий и магний и т. д.

Разделив все элементы на периоды и располагая один период под другим так, чтобы Сходные по свойствам и типу образуемых соединений элементы приходились друг под другом, Менделеев со­ставил таблицу, названную им периодической системой элементов по группам и рядам.

Значение периодической систе мы. Периодическая система элементов оказала большое влияние на последующее развитие химии. Она не только была первой естественной классификацией химических элементов, показавшей, что они обра­зуют стройную систему и находятся в тесной связи друг с дру­гом, но и явилась могучим орудием для дальнейших исследо­ваний.

7. Периодическое изменение свойств химических элементов. Атомные и ионные радиусы. Энергия ионизации. Сродство к электрону. Электроотрицательность.

Зависимость атомных радиусов от заряда ядра атома Z имеет периодический характер. В пределах одного периода с увеличе­нием Z проявляется тенденция к уменьшению размеров атома, что особенно четко наблюдается в коротких периодах

С началом застройки нового электронного слоя, более удален­ного от ядра, т. е. при переходе к следующему периоду, атомные радиусы возрастают (сравните, например, радиусы атомов фтора и натрия). В результате в пределах подгруппы с возрастанием заряда ядра размеры атомов увеличиваются.

Потеря атомов электронов приводит к уменьшению его эф­фективных размеров, а присоединение избыточных электронов - к увеличению. Поэтому радиус положительно заряженного иона (катиона) всегда меньше, а радиус отрицательно заряженного нона (аниона) всегда больше радиуса соответствующего электронейтрального атома.

В пределах одной подгруппы радиусы ионов одинакового за­ряда возрастают с увеличением заряда ядра Такая закономерность объясняется увеличением числа элек­тронных слоев и растущим удалением внешних электронов от ядра.

Наиболее ха­рактерным химическим свойством металлов является способность их атомов легко отдавать внешние электроны и превращаться в положительно заряженные ионы, а неметаллы, наоборот, харак­теризуются способностью присоединять электроны с образованием отрицательных ионов. Для отрыва электрона от атома с превраще­нием последнего в положительный ион нужно затратить некоторую энергию, называемую энергией ионизации.

Энергию ионизации можно определить путем бомбардировки атомов электронами, ускоренными в электрическом поле. То наи­меньшее напряжение поля, при котором скорость электронов ста­новится достаточной для ионизации атомов, называется потен­циалом ионизации атомов данного элемента и выражается в вольтах. При затрате достаточной энергии можно оторвать от атома два, три и более электронов. Поэтому говорят о первом потен­циале ионизации (энергия отрыва от атома первого элек­трона).втором потенциале ионизации (энергия отрыва второго электрона)

Как отмечалось выше, атомы могут не только отдавать, но и присоединять электроны. Энергия, выделяющаяся при присоедине­нии электрона к свободному атому, называется сродством атома к электрону. Сродство к электрону, как и энергия ионизации, обычно выражается в электронвольтах. Так, сродство к электрону атома водорода равно 0,75 эВ, кислорода-1,47 эВ, фтора -3,52 эВ.

Сродство к электрону атомов металлов, как правило, близко к нулю или отрицательно; из этого следует, что для атомов боль­шинства металлов присоединение электронов энергетически невы­годно. Сродство же к электрону атомов неметаллов всегда поло­жительно и тем больше, чем ближе к благородному газу распо­ложен неметалл в периодической системе; это свидетельствует об усилении неметаллических свойств по мере приближения к концу периода.

С открытием Менделеева изменилась вся мировая наука. Значение периодического закона химических элементов стало важно не только для химии, но и физики, космологии, геохимии.

Открытие Менделеева

Периодический закон был открыт Дмитрием Менделеевым в 1871 году. Разные учёные XIX века пытались найти закономерность и упорядочить все известные элементы. Менделеев установил, что химические свойства элементов меняются и повторяются с возрастанием относительной атомной массы.

Рис. 1. Менделеев.

На основе этого он расставил 63 известных элемента по шести периодам и восьми группам. Каждый период начинался металлом и заканчивался неметаллом. Менделеев оставил пробелы в таблице для неоткрытых элементов и сделал перерасчёт относительной атомной массы некоторых элементов.

Например, считалось, что атомная масса бериллия - 13,5, а не 9, как это известно сейчас. По логике Менделеева металл необходимо было поместить между углеродом с атомной массой 12 и азотом с атомной массой 14. Однако это нарушало бы принцип периодического закона: металл оказался бы между двумя неметаллами. Поэтому Менделеев предположил, что место бериллия между литием (7) и бором (9), т.е. атомная масса бериллия должна быть примерно 9, а валентность - II или III.

Математическая точность Менделеева впоследствии подтвердилась экспериментально, пропущенные учёным клетки постепенно стали заполняться. При этом Менделеев не знал о существовании элементов, их ещё предстояло открыть, но уже смог определить их порядковый номер, атомную массу, валентность, свойства.

В этом заключается главное значение открытия периодического закона Менделеева. Несмотря на новые знания, нахождение новых элементов и расширение таблицы, принцип периодического закона сохраняется и подтверждается до сих пор.

Рис. 2. Современная таблица Менделеева.

Наиболее подробно Менделеев описал три фантомных элемента - экабор, экаалюминий, экасилиций. Они были открыты в 70-80-х годах XIX века и названы соответственно скандием, галлием, германием.

Современность

Открытие, сделанное Менделеевым, повлияло на развитие науки. Если раньше новые элементы находились случайно, то с периодической таблицей химики целенаправленно, ориентируясь на пустые клетки, стали искать элементы. Так были открыты многие редко встречающиеся элементы, например, рений.

Рис. 3. Рений.

Таблица также дополнилась:

  • инертными газами;
  • радиоактивными элементами.

Кроме того, в конце XIX века благодаря теории строения атома стало известно, что свойства элементов находятся в зависимости не от относительной массы атомов, как это вывел Менделеев, а от заряда ядер. При этом порядковый номер элементов совпал с показателем заряда атома. Это позволило связать химию и физику и продолжить изучение внутриатомной энергии.

Таблица Менделеева охватывает всю неорганическую химию и даёт чёткое представление о химических, физических свойствах элементов и их месте во Вселенной.

Что мы узнали?

Периодический закон Менделеева повлиял на развитие химии и других смежных наук. Менделееву удалось предсказать многие элементы, которые были открыты позже. Он рассчитал для них атомную массу, определил их свойства. Значения подтверждались с нахождением элементов. Периодическая таблица задала направление химии: учёные стали искать элементы, ориентируясь на её пробелы.

Возможность научного прогнозирования неизвестных элементов стала реальностью лишь после открытия периодического закона и периодической системы элементов. Д. И. Менделеев предсказал существование 11 новых элементов : экабора, экасилиция, экаалюминия и др. «Координаты» элемента в периодической системе (порядковый номер, группа и период) позволяли ориентировочно предсказать атомную массу, а также важнейшие свойства прогнозируемого элемента. Точность этих предсказаний возрастала особенно тогда, когда прогнозируемый элемент находился в окружении известных и достаточно изученных элементов.

Благодаря этому в 1875 г. во Франции Л. де Буабодран открыл галлий (экаалюминий); в 1879 г. Л. Нильсон (Швеция) открыл скандий (экабор); в 1886 г. в Германии К. Винклер открыл германий (экасилиций).

В отношении неоткрытых элементов девятого и десятого рядов высказывания Д. И. Менделеева были более осторожными, ибо их свойства были изучены крайне слабо. Так, после висмута, на котором обрывался шестой период, были оставлены два прочерка. Один соответствовал аналогу теллура, другой принадлежал неизвестному тяжелому галогену. В седьмом же периоде были известны лишь два элемента - торий и уран. Д. И. Менделеев оставил несколько клеток с прочерками, которые должны были принадлежать элементам первой, второй и третьей групп, предшествующих торию. Пустая клетка была оставлена и между торием и ураном. За ураном было оставлено пять свободных мест, т.е. почти за 100 лет были предвидены трансурановые элементы.

Для подтверждения точности прогнозов Д. И. Менделеева относительно элементов девятого и десятого рядов можно привести пример с полонием (порядковый номер 84). Предсказывая свойства элемента с порядковым номером 84, Д. И. Менделеев обозначил его как аналог теллура и назвал двителлуром. Для этого элемента он предположил атомную массу 212 и способность образовывать оксид типа ЭО э. Этот элемент должен иметь плотность 9,3 г/см 3 и быть легкоплавким, кристаллическим и труднолетучим металлом серого цвета. Полоний, который в чистом виде был получен лишь в 1946 г., представляет собой мягкий легкоплавкий металл серебристого цвета с плотностью 9,3 г/см 3 . По свойствам во многом напоминает тел- лур.

Периодический закон Д. И. Менделеева, будучи одним из важнейших законов природы, имеет исключительное значение. Отражая естественную взаимосвязь, существующую между элементами, ступенями развития материи от простого к сложному, этот закон положил начало современной химии. С его открытием химия перестала быть описательной наукой.

Периодический закон и система элементов Д. И. Менделеева являются одним из надежных методов познания мира. Так как элементы объединены общностью свойств или строения, то это свидетельствует о закономерностях взаимосвязи и взаимообусловленности явлений.

Все элементы составляют в совокупности одну линию непрерывного развития от самого простейшего водорода до 118-го элемента. Такая закономерность впервые была подмечена Д. И. Менделеевым, сумевшим предсказать существование новых элементов, показав тем самым непрерывность развития материи.

Сопоставлением свойств элементов и их соединений внутри групп легко можно обнаружить проявление закона о переходе количественных изменений в качественные. Так, внутри любого периода имеется переход от типичного металла к типичному неметаллу (галогену), однако переход от галогена к первому элементу следующего периода (щелочному металлу) сопровождается появлением резко противоположных этому галогену свойств. Открытие Д. И. Менделеева заложило точный и надежный фундамент теории строения атома, оказав огромное влияние на развитие всех современных знаний о природе вещества.

Работа Д. И. Менделеева по созданию периодической системы положила начало научно обоснованному методу целенаправленного поиска новых химических элементов. Примерами могут служить многочисленные успехи современной ядерной физики. За последние полвека с небольшим синтезированы элементы с порядковыми номерами 102-118. Изучение их свойств, так же как и получение, было бы невозможно без знаний закономерностей взаимосвязи между химическими элементами.

Доказательством подобного утверждения являются результаты исследований по синтезу элементов 114, 116, 118 .

Изотоп 114-го элемента получен взаимодействием плутония с изотопом 48 Са, а 116-го - взаимодействием кюрия с изотопом 48 Са:

Стабильность полученных изотопов столь высока, что они спонтанно не делятся, а испытывают альфа-распад, т.е. расщепление ядра с одновременным испусканием альфа-частиц.

Полученные экспериментальные данные полностью подтверждают теоретические расчеты: по мере последовательных альфа-распадов образуются ядра 112-го и 110-го элементов, после чего начинается спонтанное деление:


Сравнивая свойства элементов, мы убеждаемся, что они взаимосвязаны общностью структурных признаков. Так, сопоставляя строение внешних и предвнешних электронных оболочек, можно с высокой точностью предсказать все типы соединений, характерные для данного элемента. Такая четкая взаимосвязь очень хорошо иллюстрируется на примере 104-го элемента - резерфордия. Химиками было предсказано, что если данный элемент является аналогом гафния (72 Hf), то его тетрахлорид по свойствам должен быть примерно таким же, что и HfCl 4 . Экспериментальные химические исследования подтвердили не только прогноз химиков, но и открытие нового сверхтяжелого элемента 1(M Rf. Такая же аналогия прослеживается в свойствах - Os (Z = 76) и Ds (Z = 110) - оба элемента образуют летучие оксиды типа R0 4 . Все это говорит о проявлении закона взаимосвязи и взаимообусловленности явлений.

Сравнение свойств элементов как в пределах групп, так и периодов, и сопоставление их со строением атома указывают на закон перехода количества в качество. Переход количественных изменений в качественные возможен лишь через отрицание отрицания. Внутри периодов с увеличением заряда ядра происходит переход от щелочного металла к благородному газу. Следующий период вновь начинается со щелочного металла - элемента, который полностью отрицает свойства предшествующего ему благородного газа (например, Не и Li; Ne и Na; Аг и Кг и т.д.).

В каждом периоде заряд ядра последующего элемента возрастает на единицу но сравнению с предыдущим. Этот процесс наблюдается от водорода до 118-го элемента и свидетельствует о непрерывности развития материи.

Наконец, совмещение в атоме разноименных зарядов (протон и электрон), проявление металлических и неметаллических свойств, существование амфотерных оксидов и гидроксидов есть проявление закона единства и борьбы противоположностей.

Необходимо также отметить, что открытие периодического закона явилось началом фундаментальных исследований, касающихся свойств материи.

По выражению Нильса Бора, периодическая система является «путеводной звездой для исследований в области химии, физики, минералогии, техники».

  • Элементы 112, 114, 116, 118 получены в Объединенном институте ядерных исследований (г. Дубна, Россия). Элементы 113 и 115 получены совместно российскими и американскими физиками. Материал любезно предоставлен академиком РАН Ю. Ц. Оганесяном.

Периодическая система Д.И. Менделеева стала важнейшей вехой в развитии атомно-молекулярного учения. Благодаря ей сложилось современное понятие о химическом элементе, были уточнены представления о простых веществах и соединениях.

Этот закон обладал предсказательной силой. Он позволил вести целенаправленный поиск новых, еще не открытых элементов. Атомные веса многих элементов, определенные до этого недостаточно точно, подверглись проверке и уточнению именно потому, что их ошибочные значения вступали в противоречие с Периодическим законом.

Прогнозирующая роль периодической системы, показанная Менделеевым, в XX веке проявилась в оценке химических свойств трансурановых элементов.

Принципиальная новизна Периодического закона, открытого и сформулированного Д.И. Менделеевым, заключалась в следующем:

1. Устанавливалась связь между НЕСХОДНЫМИ по своим свойствам элементами. Эта связь заключается в том, что свойства элементов плавно и примерно одинаково изменяются с возрастанием их атомного веса, а затем эти изменения ПЕРИОДИЧЕСКИ ПОВТОРЯЮТСЯ.

2. В тех случаях, когда создавалось впечатление, что в последовательности изменения свойств элементов не хватает какого-нибудь звена, в Периодической таблице предусматривались ПРОБЕЛЫ, которые надо было заполнить еще не открытыми элементами. Мало того, Периодический закон позволял ПРЕДСКАЗЫВАТЬ свойства этих элементов.

С момента появления Периодического закона химия перестала быть описательной наукой. Как образно заметил известный русский химик Н.Д. Зелинский, Периодический закон явился «открытием взаимной связи всех атомов в мироздании».

Дальнейшие открытия в химии и физике многократно подтвердили фундаментальный смысл Периодического закона. Были открыты инертные газы, которые великолепно вписались в Периодическую систему - особенно наглядно это показывает длинная форма таблицы. Порядковый номер элемента оказался равным заряду ядра атома этого элемента. Многие неизвестные ранее элементы были открыты благодаря целенаправленному поиску именно тех свойств, которые предсказывались по Периодической таблице.

Периодическая система Менделеева явилась своего рода путеводной картой при изучении неорганической химии и исследовательской работе в этой области.

Появление периодической системы открыло новую, подлинно научную эру в истории химии и ряде смежных наук -- взамен разрозненных сведений об элементах и соединениях появилась стройная система, на основе которой стало возможным обобщать, делать выводы, предвидеть.

В истории развития науки известно много крупных открытий. Но немногие из них можно сопоставить с тем, что сделал Менделеев. Периодический закон химических элементов стал естественнонаучной основой учения о веществе, о его строении и эволюции в природе.

Американские ученые (Г. Сиборг и др.), синтезировавшие в 1955 году элемент № 101, дали ему название Менделевий «… в знак признания приоритета великого русского химика, который первым использовал периодическую систему элементов. Для предсказания химических свойств тогда еще не открытых элементов». Этот принцип был ключом при открытии почти всех трансурановых элементов.

В 1964 году имя Менделеева занесено на Доску Почета науки Бриджпортского университета (США) в число имен величайших ученых мира.

Периодическая система Д. И. Менделеева стала важнейшей вехой в развитии атомно-молекулярного учения. Благодаря ей сложилось современное понятие о химическом элементе, были уточнены представления о простых веществах и соединениях.

Прогнозирующая роль периодической системы, показанная ещё самим Менделеевым, в XX веке проявилась в оценке химических свойств трансурановых элементов.

Разработанная в XIX в. в рамках науки химии, периодическая таблица явилась готовой систематизацией типов атомов для новых разделов физики, получивших развитие в начале XX в. - физики атома и физики ядра. В ходе исследований атома методами физики было установлено, что порядковый номер элемента в таблице Менделеева (атомный номер) является мерой электрического заряда атомного ядра этого элемента, номер горизонтального ряда (периода) в таблице определяет число электронных оболочек атома, а номер вертикального ряда - квантовую структуру верхней оболочки, чему элементы этого ряда и обязаны сходством химических свойств.

Появление периодической системы открыло новую, подлинно научную эру в истории химии и ряде смежных наук - взамен разрозненных сведений об элементах и соединениях появилась стройная система, на основе которой стало возможным обобщать, делать выводы, предвидеть.

Периодический закон - фундаментальный закон природы, открытый Д. И. Менделеевым в 1869 году при сопоставлении свойств известных в то время химических элементов и величин их атомных масс. Определения

Периодический закон был сформулирован Д. И. Менделеевым в следующем виде (1871): «свойства простых тел, а также формы и свойства соединений элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса» .

С развитием атомной физики и квантовой химии Периодический закон получил строгое теоретическое обоснование. Благодаря классическим работам Й. Ридберга (1897), А. Ван-ден-Брука (1911), Г. Мозли (1913) был раскрыт физический смысл порядкового (атомного) номера элемента. Позднее была создана квантово-механическая модель периодического изменения электронного строения атомов химических элементов по мере возрастания зарядов их ядер (Н. Бор, В. Паули, Э. Шрёдингер, В. Гейзенберг и др.).

В настоящее время Периодический закон Д. И. Менделеева имеет следующую формулировку: «свойства химических элементов, а также формы и свойства образуемых ими простых веществ и соединений находятся в периодической зависимости от величины зарядов ядер их атомов» .

Особенность Периодического закона среди других фундаментальных законов заключается в том, что он не имеет выражения в виде математического уравнения. Графическим (табличным) выражением закона является разработанная Менделеевым Периодическая система элементов.

Периодический закон универсален для Вселенной: как образно заметил известный русский химик Н. Д. Зелинский, Периодический закон явился «открытием взаимной связи всех атомов в мироздании»

В многоэлектронных атомах, как и в атоме водорода, состояние каждого электрона можно характеризовать квантовыми числами. Межэлектронное отталкивание приводит к тому, что энергия электронов, имеющих одно и то же значение n, но разные значения l, становится различной. Последовательность заполнения е подуровней определяется принципом наименьшей энергии, принципом Паули и правилом Хунда.
Принцип наименьшей энергии : заполнение электронами АО происходит в порядке возрастания их энергии. Установлена энергетическая диаграмма для различных АО в много-е нейтральных атомов, находящихся в основном состоянии(с наименьшей энергией). Правило Клечковского : энергия АО возрастает в соотв. с увеличением n+l. При одинаковом значении суммы энергия меньше у АО с меньшим значением n.
Принцип Паули : в атоме не м.б. 2 е с одинаковым значением 4х квантовых чисел. Этот набор значений полностью определяет энергетическое состояние е. 2 е, находящихся на одной АО называются спаренными. Общее число орбиталей на эн. уроне со зн. n = n*2. Следовательно, max электронная емкость = 2n*2.
Правило Хунда определяет последовательность заполнения АО е в пределах одного подуровня и гласит: При данном значении l (в пределах 1 подуровня) в основном состоянии электроны располагаются т.о., что значение суммарного спина атома max(на подуровне должно быть max число неспаренных e).
Распределение е по разл. АО называют е конфигурацией атома.Эл. конфигурация с наименьшей энергией соответствует основному состоянию атома, остальные конфигурации относятся к возбужденным состояниям. ЭК атома изображают 2мя способами: в виде е формул и е-графических диаграмм. При написании е формул используют n и l. Подуровень обозначают с помощью n и l(буквой). Число е на подуровне характеризует верхний индекс. Например, для основного состояния атома водорода: В случае е-графических диаграмм распределение е по подуровням представляют в виде квантовых ячеек. Орбиталь принято изображать квадратом, около кот. проставлено обозн. подуровня. Подуровни на каждом уровне д.б. немного смещены по высоте (энергия различна). Электроны изображаются против. стрелками в завис. от значения спина.С учетом структуры ЭК атомов все известные Эл. в соответствии со значением орбитального квантового числа последнего заполняемого подуровня можно разбить на 4 группы: s, p, d и f-элементы.
Отклонения от правила n+l наблюдаются у нек. элементов – это связано с тем, что с увеличением главного квантового числа различия между энергиями подуровней уменьшаются.

15. нуклоны, строение ядра, ядерные силы, их особенности.

А́томное ядро́ - центральная часть атома, в которой сосредоточена основная его масса (более 99,9 %). Ядро заряжено положительно, заряд ядра определяет химический элемент, к которому относят атом. Размеры ядер различных атомов составляют несколько фемтометров, что в более чем в 10 тысяч раз меньше размеров самого атома.

Атомные ядра изучает ядерная физика.

Атомное ядро состоит из нуклонов - положительно заряженных протонов и нейтральных нейтронов, которые связаны между собой при помощи сильного взаимодействия. Протон и нейтрон обладают собственным моментом количества движения (спином), равным [сн 1] и связанным с ним магнитным моментом.

Ядеpные силы - это силы пpитяжения для любой паpы нуклонов.

 Ядеpное взаимодействие относится к категоpии сильного взаимодейст-вия. Вследствие чего ядеpная энеpгия, обусловленная таким взаимодействием, весьма велика и пpевосходит электpическую энеpгию, скажем, в атомах в миллионы pаз.

 Ядеpные силы являются коpоткодействующими, тогда как электpические и магнитные силы между элементаpными частицами относятся к числу дальнодействующих. Что это значит? Это значит, что ядеpные силы имеют огpаниченный pадиус действия и этот pадиус очень мал (поpядка см; напомним, что pазмеp атома поpядка см). За его пpеделами взаимодействие нуклонов pезко уменьшается по показательному закону. Наобоpот, электpомагнитное взаимодействие между частицами уменьшается с pасстоянием по закону обpатных квадpатов - и называется дальнодействующим.

 Ядеpные силы обладают заpядовой независимостью, то есть силы между пpотонами, между нейтpонами и между пpотоном и нейтpоном одинаковы.

 Ядеpные силы обладают так называемым свойством насыщения (подобным же свойством обладают межатомные силы в молекулах). Суть этого свойства состоит в том, что каждый нуклон в ядpе может иметь огpаниченное число соседей. Когда это число доходит до пpедела, дpугие нуклоны как бы вытесняются из области действия ядеpного пpитяжения данного нуклона. Вследствие этого свойства и коpоткого действия ядеpных сил объем ядpа pастет пpопоpционально числу нуклонов в нем. Это очень важное обстоятельство, и оно может быть использовано пpи констpуиpовании модели ядpа.

 Всякое взаимодействие между частицами в физике обусловлено некотоpым полем. Напpимеp, электpомагнитное взаимодействие обусловлено электpомагнитным полем, и этому полю в квантовой теоpии соответствуют частицы - фотоны. С точки зpения фотонов взаимодействие между заpяженными частицами (напpимеp, между электpонами) pассматpивается как виpтуальный (возможный) обмен фотонами: один электpон как бы испускает фотон, а дpугой, соседний, его поглощает, и наобоpот. Такой обмен фотонами называется виpтуальным, а не pеальным, поскольку ему мешает осуществляться в действительности закон сохpанения энеpгии. Понятие обмена частицами вводят из чисто фоpмальных сообpажений: квантово-механические соотношения, хаpактеpизующие взаимодействия, стpоятся так, как будто бы между частицами пpоисходит обмен фотонами.

16. Энергия связи, полуэмпирическая формула для связи.

Энергия связи (для данного состояния системы) - разность между полной энергией связанного состояния системы тел или частиц и энергией состояния, в котором эти тела или частицы бесконечно удалены друг от друга и находятся в состоянии покоя:

где - энергия связи компонентов в системе из i компонент (частиц), - полная энергия i-го компонента в несвязанном состоянии (бесконечно удалённой покоящейся частицы) и - полная энергия связанной системы.

Для системы, состоящей из бесконечно удалённых покоящихся частиц энергию связи принято считать равной нулю, т.е. при образовании связанного состояния энергия выделяется. Энергия связи равна минимальной работе, которую необходимо затратить, чтобы разложить систему на составляющие её частицы и характеризует стабильность системы: чем выше энергия связи, тем система стабильнее.

Для валентных электронов (электронов внешних электронных оболочек) нейтральных атомов в основном состоянии энергия связи совпадает с энергией ионизации, для отрицательных ионов - со сродством к электрону.

Энергии химической связи двухатомной молекулы соответствует энергия её термической диссоциации составляет порядка сотен кДж/моль.

Энергия связи адронов атомного ядра определяется сильным взаимодействием. Для легких ядер она составляет ~0.8 МЭв на нуклон.

В капельной модели ядро рассматривается как сферическая капля несжимаемой заряженной ядерной жидкости радиуса R = r 0 A 1/3 . То есть в энергии связи ядра учитываются объемная, поверхностная и кулоновская энергии. Дополнительно учитываются выходящие за рамки чисто капельных представлений энергия симметрии и энергия спаривания. В рамках этой модели можно получить полуэмпирическую формулу Вайцзеккера для энергии связи ядра.

E св (A,Z) = a 1 A - a 2 A 2/3 - a 3 Z 2 /A 1/3 - a 4 (A/2 - Z) 2 /A + a 5 A -3/4 .

Первое слагаемое в энергии связи ядра, подобного жидкой капле, пропорционально массовому числу A и описывает примерное постоянство удельной энергии связи ядер.
Второе слагаемое - поверхностная энергия ядра уменьшает полную энергию связи, так как нуклоны, находящиеся на поверхности имеют меньше связей, чем частицы внутри ядра. Это аналог поверхностного натяжения.
Третье слагаемое в энергии связи обусловлено кулоновским взаимодействием протонов. В капельной модели предполагается, что электрический заряд протонов равномерно распределен внутри сферы радиуса R = r 0 A 1/3 .
Четвертое слагаемое - энергия симметрии ядра отражает тенденцию к стабильности ядер с N = Z.
Пятое слагаемое - энергия спаривания учитывает повышенную стабильность основных состояний ядер с четным числом протонов и/или нейтронов.
Входящие в формулу коэффициенты a 1 , a 2 , a 3 , a 4 и a 5 оцениваются из экспериментальных данных по знергиям связи ядер, что дает

a 1 = 15.75 МэВ; a 2 = 17.8 МэВ; a 3 = 0.71 МэВ; a 4 = 94.8 МэВ;

17. Альфа- и бета-распады, закон радиоактивного распада.

Бе́та-распа́д - тип радиоактивного распада, обусловленного слабым взаимодействием и изменяющего заряд ядра на единицу. При этом ядро может излучать бета-частицу (электрон или позитрон). В случае испускания электрона он называется «бета-минус» (), а в случае испускания позитрона - «бета-плюс-распадом» (). Кроме и -распадов, к бета-распадам относят также электронный захват, когда ядро захватывает атомный электрон. Во всех типах бета-распада ядро излучает электронное нейтрино ( -распад, электронный захват) или антинейтрино ( -распад).

Механизм распада

В -распаде слабое взаимодействие превращает нейтрон в протон, при этом испускаются электрон и антинейтрино:

На фундаментальном уровне (показанном на Фейнмановской диаграмме) это обусловлено превращением d-кварка в u-кварк с испусканием W-бозона.

В -распаде протон превращается в нейтрон, позитрон и нейтрино:

Таким образом, в отличие от -распада , -распад не может происходить в отсутствие внешней энергии, поскольку масса самого

нейтрона больше массы протона. -распад может случаться только внутри ядер, где абсолютное значение энергии связи дочернего ядра больше энергии связи материнского ядра. Разность между двумя этими энергиями идёт на превращение протона в нейтрон, позитрон и нейтрино и на кинетическую энергию получившихся частиц.

Во всех случаях, когда β + -распад энергетически возможен (и протон является частью ядра с электронными оболочками), он сопровождается процессом электронного захвата, при котором электрон атома захватывается ядром с испусканием нейтрино:

Но если разность масс начального и конечного атомов мала (меньше удвоенной массы электрона, то есть 1022 кэВ), то электронный захват происходит, не сопровождаясь конкурирующим процессом позитронного распада; последний в этом случае запрещён законом сохранения энергии.

Когда протон и нейтрон являются частями атомного ядра, эти процессы распада превращают один химический элемент в другой. Например:

( распад),

( распад),

(электронный захват).

Бета-распад не меняет число нуклонов в ядре A , но меняет только его заряд Z . Таким образом может быть введён набор всех нуклидов с одинаковым A ; эти изобарные нуклиды могут превращаться друг в друга при бета-распаде. Среди них некоторые нуклиды (по крайней мере, один) бета-стабильны, поскольку они представляют собой локальные минимумы излишка массы: если такое ядро имеет (A , Z ) числа, соседние ядра (A , Z −1) и (A ,Z +1) имеют больший излишек массы и могут распадаться посредством бета-распада в (A , Z ), но не наоборот. Необходимо заметить, что бета-стабильное ядро может подвергаться другим типам радиоактивного распада (альфа-распаду, например). Большинство изотопов, существующих в природных условиях на Земле, бета-стабильны, но существует несколько исключений с такими большими периодами полураспада, что они не успели исчезнуть за примерно 4,5 млрд лет, прошедшие с момента нуклеосинтеза. Например, 40 K, который испытывает все три типа бета-распада (бета-минус, бета-плюс и электронный захват), имеет период полураспада 1.277·10 9 лет.

Бета-распад можно рассматривать как переход между двумя квантовомеханическими состояниями, обусловленный возмущением, поэтому он подчиняется золотому правилу Ферми.

А́льфа-распа́д , вид радиоактивного распада ядра, в результате которого происходит испускание альфа-частицы. При этом массовое число уменьшается на 4, а атомный номер - на 2. Альфа-распад наблюдается только у тяжёлых ядер (Атомный номер должен быть больше 82, массовое число должно быть больше 200). Альфа-частица испытывает туннельный переход через кулоновский барьер в ядре, поэтому альфа-распад является существенно квантовым процессом. Поскольку вероятность туннельного эффекта зависит от высоты барьера экспоненциально, период полураспада альфа-активных ядер экспоненциально растёт с уменьшением энергии альфа-частицы (этот факт составляет содержание закона Гейгера-Неттола). При энергии альфа-частицы меньше 2 МэВ время жизни альфа-активных ядер существенно превышает время существования Вселенной. Поэтому, хотя большинство природных изотопов тяжелее церия в принципе способны распадаться по этому каналу, лишь для немногих из них такой распад действительно зафиксирован.

Скорость вылета альфа-частицы 9400(Nd-144)-23700(Po-212m) км/с. В общем виде формула альфа-распада выглядит следующем образом:

Пример альфа-распада для изотопа 238 U:

Альфа-распад может рассматриваться как предельный случай кластерного распада.

18. Ядерные реакции, реакции деления ядер.

Я́дерная реа́кция - процесс образования новых ядер или частиц при столкновениях ядер или частиц. Впервые ядерную реакцию наблюдал Резерфорд в 1919 году, бомбардируя α-частицами ядра атомов азота, она была зафиксирована по появлению вторичных ионизирующих частиц, имеющих пробег в газе больше пробега α-частиц и идентифицированных как протоны. Впоследствии с помощью камеры Вильсона были получены фотографии этого процесса.

По механизму взаимодействия ядерные реакции делятся на два вида:

§ реакции с образованием составного ядра, это двухстадийный процесс, протекающий при не очень большой кинетической энергии сталкивающихся частиц (примерно до 10 МэВ).

§ прямые ядерные реакции, проходящие за ядерное время , необходимое для того, чтобы частица пересекла ядро. Главным образом такой механизм проявляется при больших энергиях бомбардирующих частиц.

Если после столкновения сохраняются исходные ядра и частицы и не рождаются новые, то реакция является упругим рассеянием в поле ядерных сил, сопровождается только перераспределением кинетической энергии и импульсачастицы и ядра-мишени и называется потенциальным рассеянием .

Деле́ние ядра́ - процесс расщепления атомного ядра на два (реже три) ядра с близкими массами, называемых осколками деления. В результате деления могут возникать и другие продукты реакции: лёгкие ядра (в основном альфа-частицы), нейтроны и гамма-кванты. Деление бывает спонтанным (самопроизвольным) и вынужденным (в результате взаимодействия с другими частицами, прежде всего, с нейтронами). Деление тяжёлых ядер - экзотермический процесс, в результате которого высвобождается большое количество энергии в виде кинетической энергии продуктов реакции, а также излучения. Деление ядер служит источником энергии в ядерных реакторах и ядерном оружии.

Ядерная реакция деления - процесс расщепления атомного ядра на два (реже три) ядра с близкими массами, называемых осколками деления. В результате деления могут возникать и другие продукты реакции: лёгкие ядра (в основном альфа-частицы), нейтроны игамма-кванты. Деление бывает спонтанным (самопроизвольным) и вынужденным (в результате взаимодействия с другими частицами, прежде всего, с нейтронами). Деление тяжёлых ядер - экзоэнергетический процесс, в результате которого высвобождается большое количество энергии в виде кинетической энергии продуктов реакции, а также излучения.

Деление ядер служит источником энергии в ядерных реакторах и ядерном оружии.

19. Цепная реакция, её особенности.

Цепная реакция - химическая и ядерная реакция, в которой появление активной частицы (свободного радикала или атома в химическом, нейтрона в ядерном процессе) вызывает большое число (цепь) последовательных превращений неактивных молекул или ядер. Свободные радикалы и многие атомы, в отличие от молекул, обладают свободными ненасыщенными валентностями (непарным электроном), что приводит к их взаимодействию с исходными молекулами. При столкновении свободного радикала (R ) с молекулой происходит разрыв одной из валентных связей последней и, таким образом, в результате реакции образуется новый свободный радикал, который, в свою очередь, реагирует с другой молекулой - происходит цепная реакция.

К цепным реакциям в химии относятся процессы окисления (горение, взрыв), крекинга, полимеризации и другие, широко применяющиеся в химической и нефтяной промышленности.

В ядерной цепной реакции (которая была так названа по аналогии с химической) активными частицами являются нейтроны, которые инициируют один из видов ядерной реакции - деление ядер. Цепная ядерная реакция является основой для ядерной энергетики и ядерного оружия.

20. Термоядерная реакция.

Термоядерная реакция - слияние двух атомных ядер с образованием нового, более тяжелого ядра, за счет кинетической энергии их теплового движения.

Для ядерной реакции синтеза исходные ядра должны обладать относительно большой кинетической энергией, поскольку они испытывают электростатическое отталкивание так как одноименно положительно заряжены.

Согласно кинетической теории, кинетическую энергию движущихся микрочастиц вещества (атомов, молекул или ионов) можно представить в виде температуры, а следовательно, нагревая вещество можно достичь ядерной реакции синтеза.

Подобным образом протекают ядерные реакции естественного нуклеосинтеза в звездах.

Реакции синтеза между ядрами легких элементов вплоть до железа проходят экзоэнергетически, с чем связывают возможность применения их в энергетике, в случае решения проблемы управления термоядерным синтезом.

Прежде всего, среди них следует отметить реакцию между двумя изотопами (дейтерий и тритий) весьма распространенного на Земле водорода, в результате которой образуется гелий и выделяется нейтрон. Реакция может быть записана в виде:

+ энергия (17,6 МэВ) .

Выделенная энергия (возникающая из-за того, что гелий-4 имеет очень сильные ядерные связи) переходит в кинетическую энергию, большую часть из которой, 14,1 МэВ, уносит с собой нейтрон как более лёгкая частица . Образовавшееся ядро прочно связано, поэтому реакция так сильно экзоэнергетична. Эта реакция характеризуется наинизшим кулоновским барьером и большим выходом, поэтому она представляет особый интерес для управляемого термоядерного синтеза .

Термоядерная реакция также используется в термоядерном оружии.


Похожая информация.