Сообщение непрерывные дроби что такое. Непрерывные дроби. Приближение вещественных чисел рациональными

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ И НАУК КЕМЕРОВСКОЙ ОБЛАСТИ

Государственное образовательное учреждение среднего профессионального образования Томь-Усинский энерготранспортный техникум

по дисциплине Математика

Непрерывные дроби

Выполнил:

студент группы ТРУК-1-14

Жулева Дарья

Проверил:

преподаватель математики

Кемерова С.И.

Введение

1. История цепных дробей

2. Разложение в непрерывную дробь

3. Приближение вещественных чисел к рациональным

4. Приложения цепных дробей

5. Свойства золотого сечения

Список литературы

Введение

Цепная дробь (или непрерывная дробь) -- это математическое выражение вида

где a0 есть целое число и все остальные an натуральные числа (положительные целые). Любое вещественное число можно представить в виде цепной дроби (конечной или бесконечной). Число представляется конечной цепной дробью тогда и только тогда, когда оно рационально. Число представляется периодической цепной дробью тогда и только тогда, когда оно является квадратичной иррациональностью.

1. История цепных дробей

Цепные дроби были введены в 1572 году итальянским математиком Бомбелли. Современное обозначение непрерывных дробей встречается у итальянского математика Катальди в 1613 году. Величайший математик XVIII века Леонардо Эйлер первый изложил теорию цепных дробей, поставил вопрос об их использовании для решения дифференциальных уравнений, применил их к разложению функций, представлению бесконечных произведений, дал важное их обобщение.

Работы Эйлера по теории цепных дробей были продолжены М. Софроновым (1729-1760), академиком В.М. Висковатым (1779-1819), Д. Бернулли (1700-1782) и др. Многие важные результаты этой теории принадлежат французскому математику Лагранжу, который нашел метод приближенного решения с помощью цепных дробей дифференциальных уравнений.

Алгоритм Евклида дает возможность найти представление (или разложение) любого рационального числа в виде цепной дроби. В качестве элементов цепной дроби получаются неполные частные последовательных делений в системе равенств, поэтому элементы цепной дроби называются также неполными частными. Кроме того, равенства системы показывают, что процесс разложения в цепную дробь состоит в последовательном выделении целой части и перевертывании дробной части.

2. Разложение в непрерывную дробь

Последняя точка зрения является более общей по сравнению с первой, так как она применима к разложению в непрерывную дробь не только рационального, но и любого действительного числа.

Разложение рационального числа имеет, очевидно, конечное число элементов, так как алгоритм Евклида последовательного деления a на b является конечным.

Понятно, что каждая цепная дробь представляет определенное рациональное число, то есть равна определенному рациональному числу. Но возникает вопрос, не имеются ли различные представления одного и того же рационального числа цепной дробью? Оказывается, что не имеются, если потребовать, чтобы было.

Непрерывные дроби - последовательность, каждый член которой является обычной дробью, порождает непрерывную (или цепную) дробь, если ее второй член прибавить к первому, а каждую дробь, начиная с третьей, прибавить к знаменателю предыдущей дроби.

Любое вещественное число может быть представлено (конечной или бесконечной, периодической или непериодической) цепной дробью

где обозначает целую часть числа.

Для рационального числа это разложение оборвётся по достижении нулевого для некоторого n. В этом случае представляется конечной цепной дробью.

Для иррационального все величины будут ненулевыми и процесс разложения можно продолжать бесконечно. В этом случае представляется бесконечной цепной дробью.

Для рациональных чисел может быть использован алгоритм Евклида для быстрого получения разложения в цепную дробь.

3. Приближение в ещественных чисел к рациональным

Цепные дроби позволяют эффективно находить хорошие рациональные приближения вещественных чисел. А именно, если вещественное число разложить в цепную дробь, то её подходящие дроби будут удовлетворять неравенству

Отсюда, в частности, следует:

· подходящая дробь является наилучшим приближением для среди всех дробей, знаменатель которых не превосходит;

· мера иррациональности любого иррационального числа не меньше 2.

4. Приложения цепных дробей

Теория календаря

При разработке солнечного календаря необходимо найти рациональное приближение для числа дней в году, которое равно 365,2421988… Подсчитаем подходящие дроби для дробной части этого числа:

Первая дробь означает, что раз в 4 года надо добавлять лишний день; этот принцип лёг в основу юлианского календаря. При этом ошибка в 1 день накапливается за 128 лет. Второе значение (7/29) никогда не использовалось. Третья дробь (8/33), то есть 8 високосных лет за период в 33 года, была предложена Омаром Хайямом в XI веке и положила начало персидскому календарю, в котором ошибка в день накапливается за 4500 лет (в григорианском -- за 3280 лет). Очень точный вариант с четвёртой дробью (31/128, ошибка в сутки накапливается только за 100000 лет) пропагандировал немецкий астроном Иоганн фон Медлер (1864), однако большого интереса он не вызвал.

Другие приложения

· Доказательство иррациональности чисел. Например, с помощью цепных дробей была доказана иррациональность значения дзета-функции Римана

· Решение в целых числах уравнения Пелля

и других уравнений диофантова анализа

· Определение заведомо трансцендентного числа (см. теорема Лиувилля)

· Алгоритмы факторизации SQUFOF и CFRAC

· Характеристика ортогональных многочленов

· Характеристика устойчивых многочленов

5. Свойства золотого сечения

Интересный результат, который следует из того, что выражение непрерывной дроби для ц не использует целых чисел, больших 1, состоит в том, что ц является одним из самых «трудных» действительных чисел для приближения с помощью рациональных чисел.

Теорема Гурвица утверждает, что любое действительное число k может быть приближено дробью m /n так, что

Хотя практически все действительные числа k имеют бесконечно много приближений m /n , которые находятся на значительно меньшем расстоянии от k , чем эта верхняя граница, приближения для ц (то есть числа 5/3, 8/5, 13/8, 21/13 и т. д.) в пределе достигают этой границы, удерживая расстояние на почти точно от ц, тем самым никогда не создавая столь хорошие приближения как, к примеру, 355/113 для р. Может быть показано, что любое действительное число вида (a + b ц)/(c + d ц), a ,b , c и d являются целыми числами, причём

ad ? bc = ±1,

обладают тем же свойством, как и золотое сечение ц; а также, что все остальные действительные числа могут быть приближены намного лучше.

дробь математический число уравнение

С писок литературы

1. В.И. Арнольд. Цепные дроби. -- М.: МЦНМО, 2000. -- Т. 14. -- 40 с. -- (Библиотека «Математическое просвещение»).

2. Н.М. Бескин Цепные дроби // Квант. -- 1970. -- Т. 1. -- С. 16--26,62.

3. Н.М. Бескин Бесконечные цепные дроби // Квант. -- 1970. -- Т. 8. -- С. 10--20.

4. Д.И. Боднар Ветвящиеся цепные дроби. -- К.: Наука, 1986. -- 174 с.

5. А.А. Бухштаб. Теория чисел. -- М.: Просвещение, 1966. -- 384 с.

6. И.М. Виноградов. Основы теории чисел. -- М.-Л.: Гос. изд. технико-теоретической литературы, 1952. -- 180 с.

7. С.Н. Гладковский. Анализ условно-периодических цепных дробей, ч. 1. -- Незлобная, 2009. -- 138 с.

8. И.Я. Депман. История арифметики. Пособие для учителей. -- Изд. второе. -- М.: Просвещение, 1965. -- С. 253--254.

9. Г. Дэвенпорт. Высшая Арифметика. -- М.: Наука, 1965.

10. С.В. Сизый. Лекции по теории чисел. -- Екатеринбург: Уральский государственный университет им. А. М. Горького, 1999.

11. В. Скоробогатько. Теория ветвящихся цепных дробей и ее применение в вычислительной математике. -- М.: Наука, 1983. -- 312 с.

12. А.Я. Хинчин. Цепные дроби. -- М.: ГИФМЛ, 1960.

Размещено на Allbest.ru

Подобные документы

    На протяжении многих веков на языках народов ломаным числом именовали дробь. Необходимость в дробях возникла на ранней ступени развития человечества. Виды дробей. Запись дробей в Египте, Вавилоне. Римская система дробей. Дроби на Руси - "ломаные числа".

    презентация , добавлен 21.01.2011

    Первая дробь, с которой познакомились люди в Египте. Числитель и знаменатель дроби. Правильная и неправильная дробь. Смешанное число. Приведение к общему знаменателю. Неполное частное. Целая и дробная часть. Обратные дроби. Умножение и деление дробей.

    презентация , добавлен 11.10.2011

    Из истории десятичных и обыкновенных дробей. Действия над десятичными дробями. Сложение (вычитание) десятичных дробей. Умножение десятичных дробей. Деление десятичных дробей.

    реферат , добавлен 29.05.2006

    История арифметики остатков. Понятие остатка, наибольшего общего делителя, расширенного алгоритма Евклида и применение его для решения линейных диофантовых уравнений. Алгебраический подход к делимости в кольцах и разложение чисел в цепные дроби.

    дипломная работа , добавлен 23.08.2009

    Сумма n первых чисел натурального ряда. Вычисление площади параболического сегмента. Доказательство формулы Штерна. Выражение суммы k-х степеней натуральных чисел через детерминант и с помощью бернуллиевых чисел. Сумма степеней и нечетных чисел.

    курсовая работа , добавлен 14.09.2015

    Появление слова "дробь" в русском языке в VIII веке. Старые названия дробей: полтина, четь, треть, полчеть, полтреть. Особенности древнеримской дробной системы. Л. Пизанский - ученый, который стал использовать и распространять современную запись дробей.

    презентация , добавлен 18.11.2013

    Класс рациональных функций. Практический пример решения интегралов. Линейная замена переменной. Сущность и главные задачи метода неопределенных коэффициентов. Особенности, последовательность представления подынтегральной дроби в виде суммы простых дробей.

    презентация , добавлен 18.09.2013

    Обозначение десятичной дроби в разное время. Использование десятичной системы мер в Древнем Китае. Запись дроби в одну строку числами в десятичной системе и правила действия с ними. Симон Стевин как фландрский учений, изобретатель десятичных дробей.

    презентация , добавлен 22.04.2010

    Теоретико-методологические основы формирования математического понятия дроби на уроках математики. Процесс формирования математических понятий и методика их введения. Практическое исследование введения и формирования математического понятия дроби.

    дипломная работа , добавлен 23.02.2009

    Математика Древнего и Средневекового Китая. Правило двух ложных положений. Системы линейных уравнений со многими неизвестными. Начальные этапы развития тригонометрии. Создание позиционной десятичной нумерации. Арифметика натуральных чисел и дробей.

Сокращение с помощью разложения в непрерывную дробь

Подходящие дроби. Приближение вещественных чисел

Литература: 1. Виноградов И.М. Элементы высшей математики.

Часть третья. Основы теории чисел. Учебник для вузов.

М.: Высш. шк. 1999. – с. 335 – 340.

Грибанов В.У. Сборник упражнений по теории чисел.

– М.: Просвещение, 1964.

Шнеперман Л.Б. Сборник задач по алгебре и теории

чисел: Учебное пособие. – СПб.: Изд. «Лань»,2008.- 224с.

Краткие сведения из теории

Если - обыкновенная несократимая дробь, правильная или неправильная, то с помощью алгоритма Евклида можно эту дробь представить в виде:

a = bq 0 + a 1 ,

b = a 1 q 1 + a 2 ,

a 1 = a 2 q 2 + a 3 ,

…………….

a n-2 = a n-1 q n-1 + a n ,

a n-1 = a n q n .

Здесь q 0 , q 1 , q 2 , q 3 ,…, q n – неполные частные;

a 1 , a 2 ,a 3 ,…., a n - остатки.

Правую часть такого разложения можно представить в виде:

= q 0 +

…………

+ ,

Выражение, написанное в правой части, называется конечной непрерывной или цепной дробью.

Кратко написанное равенство можно записать так:

= (q 0 , q 1 , q 2 , q 3 ,…, q n)

Дроби = , = q 0 + , = q 0 + ,…… называются подходящими. Числитель и знаменатель этих дробей можно вычислить по рекуррентным формулам:

P -2 = 0; Q -2 =1: P -1 = 1; Q -1 = 0;

при k≥0; P k = q k P k -1 + P k -2 ; Q k = q k Q k -1 + Q k -2 . (1)

По определению P n = a , Q n = b.

Процесс вычислений удобно оформить в виде таблицы:

k -2 -1 …… n-1 n
q k q 0 q 1 q 2 …… q n-1 q n
P k P 0 P 1 P 2 …… P n-1 P n
Q k Q 0 Q 1 Q 2 …… Q n-1 Q n

Между подходящими дробями и самой дробью имеют место соотношения:

< < < ….. < < …… < < <

Для оценки погрешности при замене дроби подходящей дробью , будем применять следующую формулу:

‌‌‌ - .

Пример. Заменить дробь = подходящейдробью с погрешностью0,001.

Разложим дробь с помощью алгоритма Евклида:

Если возьмем для замены дробь , то погрешность замены будет

0,006, что более заданной 0,001, поэтому дробь не подходит.

Берем дробь для которой погрешность 0,0003 < 0,001.

Пример. По данной конечной непрерывной дроби найти соответствующую обыкновенную дробь. Пусть = (2; 1; 1; 3; 1; 2).

Решение. По соответствующим значениям q k , используя рекуррентные формулы, определим соответствующие значения числителя и знаменателя подходящих дробей P k , Q k . При k=n получим P n = a , Q n =b .

k -2 -1
q k
P k a=64
Q k b=25

k = 0; P 0 = q 0 P -1 + P -2 = 2×1 + 0 = 2; Q 0 = q 0 Q -1 + Q -2 = 2×0 + 1 = 1;

k = 1; P 1 = q 1 P 0 + P -1 = 1×2 + 1 = 3; Q 1 = q 1 Q 0 + Q -1 = 1×1 + 0 = 1;

k = 2; P 2 = q 2 P 1 + P 0 = 1×3 + 2 = 5; Q 2 = q 2 Q 1 + Q 0 = 1×1 + 1 = 2;

k = 3; P 3 = q 3 P 2 + P 1 = 3×5 + 3 = 18; Q 3 = q 3 Q 2 + Q 1 = 3×2 + 1 = 7;

k = 4; P 4 = q 4 P 3 + P 2 = 1×18 + 5 = 23; Q 4 = q 4 Q 3 + Q 2 = 1×7 + 2 = 9;

k = 5; P 5 = q 5 P 4 + P 3 = 2×23 + 18 = 64; Q 5 = q 5 Q 4 + Q 3 = 2×9 + 7 = 25.

Ответ: = .

Пример. Пусть дана дробь . Используя алгоритм Евклида разложения в непрерывную дробь, сократить эту дробь.

q 0 =2
q 1 =3
q 2 =1
q 3 =2

Получили 525 = 231 2 +63;

231 = 63 + 42;

63 = 42 1 + 21;

42 = 21 2. Имеем НОД (525;231)=21.

Полученное разложение позволяет сделать сокращенную запись

= (2; 3; 1; 2). Найдем для этого разложения подходящие дроби, используя формулы (1).

Рассмотрим последовательность

А что будет получаться при дальнейшем возрастании n? Существует ли предел Чему может равняться этот предел?

Рассмотрим положительное число х, определяемое как предел выражения


Перенесем единицу влево:


Это равенство равносильно такому:


откуда (х-1 (2+x-1) = 1 и, следовательно, или


Выражение в правой части называется цепной или непрерывной дробью. В общем виде ее можно записать так:


где а, b, с, d, вообще говоря, различные целые числа.

Если, начиная с некоторого места, повторяются одинаковые числа (или одинаковые конечные последовательности чисел), то непрерывная дробь называется периодической . Выше показано, что число может быть записано в виде периодической непрерывной дроби, хотя, как известно, это число, как и всякое другое иррациональное число, невозможно записать в виде десятичной периодической дроби .

Если десятичную периодическую дробь оборвать на каком-либо месте, мы получим ее приближенное значение (с недостатком). Например:

Оборвав непрерывную дробь, мы тоже получим ее приближенное значение в виде рационального числа. Мы видели, что и т. д. Эти дроби называют подходящими дробями для данной непрерывной дроби; в самом деле, каждая следующая подходящая дробь все ближе подходит к предельному значению данной дроби, или, иначе, дает все более точное приближение этого значения.

Можно доказать, что подходящие дроби четного порядка всегда меньше их предельного значения, а подходящие дроби нечетного порядка больше их предельного значения. Например, нетрудно проверить, что


В статье "О непрерывных дробях" (1737) Эйлер впервые указал приемы преобразования таких дробей и показал связь непрерывных периодических дробей с квадратными уравнениями и квадратическими иррациональностями. Там же показано выражение основания натуральных логарифмов, числа е * (е = 2,71828182845...), с помощью непериодической непрерывной дроби


* (Число е можно определить как . Оно играет, как и число π, важную роль в анализе и его приложениях. )

Вот еще некоторые простые разложения в непрерывные дроби, найденные Эйлером:


Разлагая в бесконечную цепную дробь е и е 2 , Эйлер, по существу, доказал иррациональность этих чисел, т. е. невозможность равенств , где m, n, р, q - произвольные натуральные числа.

Пользуясь этим, И. Г. Ламберт несколько лет спустя получил представление некоторых функций в форме бесконечных непрерывных дробей, например

Часто для непрерывных дробей применяется более компактное обозначение x 1 y 1 + x 2 y 2 + x 3 y 3 + … .

Числа x 1 y 1 = x 1 y 1 , x 1 y 1 + x 2 y 2 = x 1 y 1 + x 2 y 2 , x 1 y 1 + x 2 y 2 + x 3 y 3 = x 1 y 1 + x 2 y 2 + x 3 y 3 , … называются подходящими дробями данной непрерывной дроби. Если последовательность подходящих дробей неограниченно приближается к некоторому числу, то говорят, что бесконечная непрерывная дробь сходится к этому числу. Точнее, неограниченное приближение числовой последовательности a 1 a 2 … к числу a означает, что, какое бы маленькое положительное число ε мы бы ни взяли, все элементы последовательности, начиная с некоторого номера, будут находиться от числа a на расстоянии меньшем, чем ε . Сходимость последовательности к числу принято обозначать так: lim s → ∞ a s = a .

Мы не станем углубляться в интереснейшую проблему исследования сходимости непрерывных дробей. Вместо этого поставим перед собой задачу алгоритмического вычисления последовательности подходящих дробей для данной непрерывной дроби. Глядя на эту последовательность, вычисленную на компьютере, можно строить гипотезы о сходимости непрерывной дроби.

Можно представлять себе подходящую дробь как функцию, определённую на пространстве последовательностей числовых пар: f ⁡ x 1 y 1 x 2 y 2 … x n y n = x 1 y 1 + x 2 y 2 + x 3 y 3 + … + x n y n . Было бы неплохо, чтобы эта функция оказалась индуктивной или нашлось бы её индуктивное расширение.

Другой пример: 1 1 + 1 1 + 1 1 + … Предположив, что эта дробь сходится к числу a , найдём это число. Для этого заметим, что a = 1 1 + a (проверьте!). У этого уравнения два решения, из которых годится положительное a = 5 − 1 2 . Между прочим, a = 1 φ = φ − 1 = 0,61803398874989… , где φ - число Фидия из главы 9. «Числа Фибоначчи » . Сама же непрерывная дробь имеет самое прямое отношение к числам Фибоначчи: они уютно расположились в числителях и знаменателях подходящих дробей 1 , 1 2 , 2 3 , 3 5 , 5 8 , 8 13 , … .

Следует заметить, что способ рассуждений, при помощи которого найдено правильное значение непрерывной дроби, содержит существенный изъян. Рассуждая точно так же, мы уже нашли в разделе «Способы приближённого вычисления числа π » «значение» бесконечной суммы 1 − 1 + 1 − 1 + 1 − … = 1 2 . Странно, что сумма целых чисел оказалась дробным числом. Формула для суммы бесконечной геометрической прогрессии со знаменателем − 1 ведёт к тому же результату: S = 1 1 − − 1 = 1 2 . Впрочем, не будем забывать, что формула суммы бесконечной геометрической прогрессии применяется лишь при знаменателях, строго меньших единицы по модулю.

Укажем и ещё более странный результат, опять подтверждаемый, если можно так выразиться, формулой суммы бесконечной геометрической прогрессии: S = 1 + 2 + 4 + 8 + 16 + … = 1 + 2 ⁢ 1 + 2 + 4 + 8 + … = 1 + 2 ⁢ S , откуда S = − 1 , то есть сумма положительных слагаемых оказалась отрицательной! Всё дело в том, что поиск суммы производился в предположении о её существовании. Для полноты картины следовало бы рассмотреть и другой случай, когда сумма не существует, но тогда мы не получим никакого результата.

Весьма важное в математике число, e = 2,718281828459045… , имеет много названий: основание натуральных логарифмов , число Непера , число Эйлера . Невозможно перечислить ситуации, где в математике возникает это число, которое, к тому же, служит вечным напоминанием о дне рождения Л. Н. Толстого . Обычно e определяют при помощи второго замечательного предела

Как и число π , число Непера имеет несколько красивых представлений через непрерывные дроби: e − 2 = 1 1 + 1 2 1 + 1 3 1 + 1 4 1 + … = 2 2 + 3 3 + 4 4 + 5 5 + … = 1 1 + 1 2 + 1 1 + 1 1 + 1 4 + 1 1 + 1 1 + 1 6 + 1 1 + 1 1 + 1 8 + 1 1 + 1 1 + 1 10 + …

Читателям, заинтересовавшимся непрерывными дробями, мы рекомендуем брошюру .

- 88.50 Кб

ФЕДЕРАЛЬНОЕ АГЕНСТВО ЛЕСНОГО ХОЗЯЙСТВА РФ

ФБОУ СПО «ДИВНОГОРСКИЙ ЛЕСХОЗ – ТЕХНИКУМ»

КАБИНЕТ МАТЕМАТИКИ

ОТЧЁТ

ПО ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ №

ПО ТЕМЕ «НЕПРЕРЫВНЫЕ ДРОБИ»

Выполнил:

Студент 1 курса гр. 11Б-Л Кардапольцев А.О.

Проверил:

Преподаватель: Коновалова Е.Г.

Оценка:

Введение - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3

Непрерывная дробь- - - - - - - - - - - - - - - - - - - - - - - - - - 4

Разложение в цепную дробь - - - - - - - - - - - - - - - - - - - - 5

Приближение вещественных чисел рациональными - - 6

Историческая справка - - - - - - - - - - - - - - - - - - - - - - - - - 7

Заключение - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8

Библиографический список - - - - - - - - - - - - - - - - - - - - - - 9

Введение

Целью моей исследовательской работы является исследование теории цепных дробей. В ней я попытаюсь раскрыть свойства подходящих дробей, особенности разложения действительных чисел в неправильные дроби, погрешности, которые возникают в результате этого разложения, и применение теории цепных дробей для решения ряда алгебраических задач.

Цепные дроби были введены в 1572 году итальянским математиком Бомбелли. Современное обозначение непрерывных дробей встречается у итальянского математика Катальди в 1613 году. Величайший математик XVIII века Леонардо Эйлер первый изложил теорию цепных дробей, поставил вопрос об их использовании для решения дифференциальных уравнений, применил их к разложению функций, представлению бесконечных произведений, дал важное их обобщение.

Работы Эйлера по теории цепных дробей были продолжены М. Софроновым (1729-1760), академиком В.М. Висковатым (1779-1819), Д. Бернулли (1700-1782) и др. Многие важные результаты этой теории принадлежат французскому математику Лагранжу, который нашел метод приближенного решения с помощью цепных дробей дифференциальных уравнений.

Непрерывная дробь

Цепная дробь (или непрерывная дробь ) - это математическое выражение вида

где a 0 есть целое число и все остальные a n натуральные числа (то есть неотрицательные целые). Любое вещественное число можно представить в виде цепной дроби (конечной или бесконечной). Число представляется конечной цепной дробью тогда и только тогда, когда оно рационально. Число представляется периодической цепной дробью тогда и только тогда, когда оно является квадратичной иррациональностью.

Разложение в цепную дробь

Любое вещественное число x может быть представлено (конечной или бесконечной) цепной дробью где

где обозначает целую часть числа x .

Для рационального числа x это разложение оборвётся по достижении нулевого x n для некоторого n . В этом случае x представляется конечной цепной дробью

Для иррационального x все величины x n будут ненулевыми и процесс разложения можно продолжать бесконечно. В этом случае x представляется бесконечной цепной дробью

Приближение вещественных чисел рациональными

Цепные дроби позволяют эффективно находить хорошие рациональные приближения вещественных чисел. А именно, если вещественное число x разложить в цепную дробь, то её подходящие дроби будут удовлетворять неравенству:

Отсюда, в частности, следует:

1) подходящая дробь является наилучшим приближением

для x среди всех дробей, знаменатель которых не превосходит q n ;

2) мера иррациональности любого иррационального числа не меньше 2.

Примеры

1) Разложим число π =3,14159265… в непрерывную дробь и подсчитаем его подходящие дроби: 3, 22/7, 333/106, 355/113, 103993/33102, …

Вторая дробь (22/7) - это известное Архимедово приближение. Четвёртая (355/113) была впервые получена в Древнем Китае.

2) В теории музыки требуется отыскать рациональное приближение для

Третья подходящая дробь: 7/12 позволяет обосновать классическое деление октавы на 12 полутонов .

Историческая справка

Античные математики умели представлять отношения несоизмеримых величин в виде цепочки последовательных подходящих отношений, получая эту цепочку с помощью алгоритма Евклида. По-видимому, именно таким путём Архимед получил приближение:

Это 12-я подходящая дробь для

Или от 4-й подходящей дроби для.

В V веке индийский математик Ариабхата применял аналогичный «метод измельчения» для решения неопределённых уравнений первой и второй степени. С помощью этой же техники было, вероятно, получено известное приближение для числа π (355/113). В XVI веке Рафаэль Бомбелли извлекал с помощью цепных дробей квадратные корни (см. его алгоритм).

Начало современной теории цепных дробей положил в 1613 году Пьетро Антонио Катальди. Он отметил основное их свойство (положение между подходящими дробями) и ввёл обозначение, напоминающее современное. Позднее его теорию расширил Джон Валлис, который и предложил термин «непрерывная дробь» . Эквивалентный термин «цепная дробь » появился в конце XVIII века.

Применялись эти дроби в первую очередь для рационального приближения вещественных чисел; например, Христиан Гюйгенс использовал их для проектирования зубчатых колёс своего планетария. Гюйгенс уже знал, что подходящие дроби всегда несократимы и что они представляют наилучшее рациональное приближение.

В XVIII веке теорию цепных дробей в общих чертах завершили Леонард Эйлер и Жозеф Луи Лагранж.

Заключение

Данная исследовательская работа показывает значение цепных дробей в математике.

Их можно успешно применить к решению неопределенных уравнений вида

ax+by=c.

Основная трудность при решении таких уравнений состоит в том, чтобы найти какое-нибудь его частное решение. Так вот, с помощью цепных дробей можно указать алгоритм для разыскания такого частного решения.

Цепные дроби можно применить и к решению более сложных неопределенных уравнений, например, так называемого уравнения Пелля:

().

Бесконечные цепные дроби могут быть использованы для решения алгебраических и трансцендентных уравнений, для быстрого вычисления значений отдельных функций.

В настоящее время цепные дроби находят все большее применение в вычислительной технике, ибо позволяют строить эффективные алгоритмы для решения ряда задач на ЭВМ.

Библиографический список:

http://ru.wikipedia.org

  1. Алгебра и теория чисел. Под редакцией Н.Я. Виленкина, М, “Просвещение”, 84.
  2. И.М. Виноградов. Основы теории чисел. М, “Наука”, 72.
  3. А.А. Кочева. Задачник-практикум по алгебре и теории чисел. М, “Просвещение”, 84.
  4. Л.Я. Куликов, А.И. Москаленко, А.А. Фомин. Сборник задач по алгебре и теории чисел. М, “Просвещение”, 93.

Е.С. Ляпин, А.Е. Евсеев. Алгебра и теория чисел. М, “Просвещение”,

Описание работы

Целью моей исследовательской работы является исследование теории цепных дробей. В ней я попытаюсь раскрыть свойства подходящих дробей, особенности разложения действительных чисел в неправильные дроби, погрешности, которые возникают в результате этого разложения, и применение теории цепных дробей для решения ряда алгебраических задач.

Непрерывная дробь- - - - - - - - - - - - - - - - - - - - - - - - - - 4

Разложение в цепную дробь - - - - - - - - - - - - - - - - - - - - 5

Приближение вещественных чисел рациональными - - 6

Историческая справка - - - - - - - - - - - - - - - - - - - - - - - - - 7

Заключение - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8

Библиографический список - - - - - - - - - - - - - - -