Изменение свойств элементов в периодах и подгруппах. Закономерности и изменения свойств оксидов. Закономерности изменения химических свойств элементов и их соединений по периодам и группам

Свойства элементов и их соединений определяются : 1 - зарядов ядер атомов, 2 - атомными радиусами.

Малые периоды . Рассмотрим изменение некоторых свойств элементов и их соединений на примере II периода (см. табл. 3). Во втором периоде с увеличением положительного заряда ядер атомов происходит последовательное увеличение числа электронов на внешнем уровне, который наиболее удален от ядра атома и поэтому легко деформируется, что приводит к быстрому уменьшению радиуса атомов. Этим объясняется быстрое ослабление металлических и восстановительных свойств элементов, усиление неметаллических и окислительных свойств, нарастание кислотных свойств оксидов и гидроксидов и уменьшение основных свойств. Завершается период благородным газом (Ne). В третьем периоде свойства элементов и их соединений изменяются так же, как и во втором, так как у атомов элементов данного периода повторяются электронные структуры атомов элементов второго периода (3s- и 3p-подуровни)

Большие периоды (IV, V ). В четных рядах больших периодов (IV, V), начиная с третьего элемента происходит последовательное увеличение числа электронов на предпоследнем уровне, а структура внешнего уровня остается неизменной. Предпоследний уровень расположен ближе к ядру атома и поэтому деформируется в меньшей степени. Это приводит к более медленному ­уменьшению радиуса атомов. Например:

Следствием медленного изменения радиуса атомов и одинакового числа электронов на внешнем уровне является и медленное убывание металлических и восстановительных свойств элементов и их соединений. Так, в четном ряду IV периода K - Mn - активные металлы Fe - Ni - металлы средней активности (сравните с элементами II периода, где третий элемент - бор - уже неметалл).

А начиная с III группы нечетного ряда свойства элементов и их соединений изменяются также, как в малых периодах, т. к. начинает застраиваться внешний уровень. Таким образом, структура энергетического уровня является определяющей в свойствах элементов и их соединений. Завершается каждый рассматриваемый период также благородным газом.

Рассмотрев изменение некоторых свойств элементов и их соединений в периодах, можно сделать следующие выводы:

1. Каждый период начинается щелочным металлом, а заканчивается благородным газом.

2. Свойства элементов и их соединений периодически повторяются потому, что периодически повторяются строения энергетических уровней, В этом физический смысл периодического закона.

В главных подгруппах увеличивается число энергетических уровней, это приводит к возрастанию атомных радиусов. Поэтому в главных подгруппах (сверху вниз) уменьшается электроотрицательность, возрастают мегалитические и восстановительные свойства элементов, а неметаллические и окислительные - убывают, основные свойства оксидов и гидроксидов увеличиваются, а кислотные - уменьшаются. Для примера рассмотрим главную подгруппу II группы.

Таким образом, свойства элемента и его соединений являются промежуточными между двух соседних с ним элементов по периоду и подгруппе.

По координатам (номер периода и номер группы) элемента в периодической системе Д. И. Менделеева можно определить электронную структуру его атома, а, следовательно, предвидеть его главные свойства.

1. число электронных уровней в атоме определяет № периода , в котором находится соответствующий элемент.

2. Суммарное число электронов , находящихся в s- и p-орбиталях внешнего уровня (для элементов главных подгрупп) и в d-орбиталях предвнешнего и s-орбиталях внешнего уровня (для элементов побочных подгрупп; исключения :

определяет № группы .

3. f-элементы располагаются либо в побочной подгруппе III группы (короткопериодный вариант), либо между IIА- и IIIВ-группами (длиннопериодный вариант) - лантаноиды (№ 57-70), актиноиды (№ 89-102).

4. Атомы элементов разных периодов, но одной подгруппы имеют одинаковое строение внешних и предвнешних электронных уровней и, следовательно, обладают близкими химическими свойствами.

5. максимальное окислительное число элемента совпадает с номером группы, в которой элемент находится. Характер образуемых элементом оксидов и гидроксидов зависит от окислительного числа элементов в них. Оксиды и гидроксиды, в которых элемент находится в степени окисления:

Чем больше степень окисления кислотообразующего элемента, тем ярче выражены кислотные свойства оксидов и гидроксидов.

Следовательно: оксиды и гидроксиды элементов I-III групп преимущественно амфотерные. Оксиды и гидроксиды элементов IV-VII групп преимущественно кислотные (при максимальной степени окисления). Оксиды и гидроксиды тех же элементов, но с низшей степенью окисления могут быть разного характера.

6. Соединения элементов с водородом могут быть подразделены на 3 большие группы:

а) солеподобные гидриды активных металлов (LiH - , CaH - и др.);

б) ковалентные водородные соединения р-элементов (B 2 H 6 , CH 4 , NH 3 , H 2 O, HF и др.);

в) металлоподобные фазы, образуемые d- и f-элементами; последние обычно являются нестехиометрическими соединениями и часто трудно решить, относить ли их к индивидуальным соединениям или твердым растворам.

Водородные соединения элементов IV группы (СН 4 -метан, SiН 4 - силан) не взаимодействуют с кислотами и основаниями, практически не растворяются в воде.

Водородные соединения элементов V группы (NН 3 -аммиак) при растворении в воде образуют основания.

Водородные соединения элементов VI и VII групп (Н 2 S, НF) при растворении в воде образуют кислоты.

7. элементы второго периода, в атомах которых заполняется 2-й электронный слой, сильно отличаются от всех других элементов. Это объясняется тем, что энергия электронов во втором слое значительно ниже энергии электронов в последующих слоях, и тем, что во втором слое не может находиться более восьми электронов.

8. d-элементы одного периода меньше отличаются друг от друга, чем элементы главных подгрупп, у которых застраиваются внешние электронные слои.

9. различия в свойствах лантаноидов, в атомах которых застраивается f-оболочка, принадлежащая к третьему с наружи слою, являются незначительными.

Каждый период (за исключением первого) начинается типичным металлом и заканчивается благородным газом, которому предшествует типичный неметалл.

Изменение свойств элементов в пределах периода:


1) ослабление металлических свойств;

2) уменьшение радиуса атома;

3) усиление окислительных свойств;

4) возрастает энергия ионизации;

5) увеличивается сродство к электрону;

6) увеличивается электроотрицательность;

7) нарастают кислотные свойства оксидов и гидроксидов;

8) начиная с IV группы (для р-элементов) увеличивается устойчивость водородных соединений и усиливаются их кислотные свойства.

Изменение свойств элементов в пределах группы:

1) возрастают металлические свойства;

2) увеличивается радиус атома;

3) усиление восстановительных свойств;

4) уменьшается энергия ионизации;

5) уменьшается сродство к электрону;

6) уменьшается электроотрицательность;

7) нарастают основные свойства оксидов и гидроксидов;

8) начиная с IV группы (для р-элементов) уменьшается устойчивость водородных соединений, усиливаются их кислотные и окислительные свойства.

ВАЛЕНТНОСТЬ - способность атомов элементов образовывать химические связи. Количественно валентность определяется числом не спаренных электронов.

В 1852 г. английский химик Эдуард Франкленд ввел понятие о соединительной силе. Это свойство атомов позже стали называть валентностью.

валентность равна 2 , т. к. есть 2 не спаренных электрона.

СТЕПЕНЬ ОКИСЛЕНИЯ - условный заряд атома, который вычисляют исходя из предположения, что молекула состоит только из ионов.

В отличие от валентности степень окисления имеет знак.

Положительная степень окисления равна числу оттянутых (отданных) электронов от данного атома. Атом может отдавать все не спаренные электроны.

Отрицательная степень окисления равна числу притянутых (присоединенных) электронов к данному атому; ее проявляют только неметаллы. Атомы неметаллов присоединяют такое количество электронов, которое необходимо для образования устойчивой восьми электронной конфигурации внешнего уровня.

Например: N -3 ; S -2 ; Cl - ; C -4 .

С увеличением заряда ядра атомов наблюдается закономерное изменение в их электронной структуре, что приводит к закономерному изменению химических и тех физических свойств атомов элементов, которые зависят от электронного строения (радиус атома или иона, потенциал ионизации, температуры плавления, кипения, плотность, стандартная энтальпия образования и др.)

Изменение химических свойств . При химическом взаимодействии атомов любых элементов наибольшее участие в этом процессе принимают электроны внешних слоев, наиболее удаленных от ядра, наименее связанных с ним, называемые валентными . У s- и р-элементов валентными являются электроны только внешнего слоя (s- и р-). У d-элементов валентными являются s-электроны внешнего слоя (в первую очередь) и d-электроны предвнешнего слоя. У f-элементов валентными будут s-электроны внешнего слоя (в первую очередь) , d-электроны предвнешнего слоя (если они есть) и f-электроны предпредвнешнего слоя.

Элементы, расположенные в одной подгруппе ПСЭ , имеют одинаковую структуру одного (электронные аналоги ) или двух внешних слоев (полные электронные аналоги ) и характеризуются близкими химическими свойствами, являются химическими аналогами.

Рассмотрим элементы 7 группы главной подгруппы А:

F 2s 2 2p 5

Cl 2s 2 2p 6 3s 2 3p 5 электронные аналоги

Br 3s 2 3p 6 3d 10 4s 2 4p 5

I 4s 2 4p 6 4d 10 5s 2 5p 5 полные аналоги

Элементы, расположенные в одной группе ПСЭ, но в разных погруппах , являются неполными электронными аналогами , например, Cl и Mn, V и Р и др. Почему?

Электронное строение нейтральных атомов хлора и марганца отличаются совершенно и химические свойства этих веществ в свободном состоянии не похожи: Cl –это р-элемент, типичный неметалл, газ, Mn – d-металл. Ионы хлора и марганца со степенями окисления (+7) уже являются электронными аналогами и имеют много общего в химическом отношении:

Оксиды Кислоты Соли

Cl 2s 2 2p 6 3s 2 3p 5 Cl (+7) 2s 2 2p 6 Cl 2 O 7 HClO 4 хлорная КClO 4 перхлорат калия

Mn 3s 2 3p 6 3d 5 4s 2 Mn(+7) 3s 2 3p 6 Mn 2 O 7 HMnO 4 марганцовая КMnO 4 перманганат калия

Закономерное изменение химических свойств элементов по периодам связано с закономерным изменением радиусов атомов и строения внешних и предвнешних электронных слоев атомов.

Рассмотрим на примере элементов 2, 3, 4 периодов.

Изменение атомных радиусов . Радиусы атомов не могут быть измерены непосредственно. Подразумевают так называемый “эффективный радиус”, который определяют экспериментально как ½ межъядерного расстояния для рассматриваемого элемента в кристалле. Самый малый радиус у атома водорода 0,53 о А (0,053 нм), самый большой – у Cs – 0,268 нм.

В пределах периода радиус атома уменьшается (®), т.к. увеличивается заряд ядра при том же числе электронных слоев (увеличивается притяжение электронов к ядру). В пределах подгруппы данной группы радиус атома увеличивается (¯), т.к. увеличивается число электронных слоев.


Рис.11. Изменение радиусов атомов элементов 2,3,4 периодов

Тенденция уменьшения радиуса по периоду повторяется (в каждом периоде), но на новом качественном уровне. В малых периодах, в которых только s- и p-элементы, изменение радиуса от элемента к элементу очень существенно, поскольку происходит изменение внешнего электронного слоя. У переходных d-элементов радиус меняется более монотонно, поскольку электронная структура внешнего слоя не меняется, а внутренние d-орбитали экранируют ядро и ослабляют влияние возрастающего заряда на внешние электронные слои атома. У f-элементов изменяется электронная структура еще более глубоко лежащего слоя, поэтому радиус изменяется еще менее значительно. Замедленное уменьшение размера атома с ростом заряда ядра за счет экранирующего действия на ядро d- и f-орбиталей называется d- и f-сжатием .

Рассмотрим теперь условное свойство, называемое «металличностью». Тенденция изменения этого свойства повторяет тенденцию изменения радиусов атомов, приведенных на рис.11.

Во 2, 3 периодах от элемента к элементу химические свойства меняются очень существенно: от активного металла Li (Na) через пять элементов к активному неметаллу F (Cl), поскольку от элемента к элементу происходит изменение структуры внешнего электронного слоя.

В 4 периоде за s-элементами К, Са следует группа переходных d-металлов от Sc до Zn, атомы которых отличаются структурой не внешнего, а предвнешнего слоя, что меньше отражается на изменении химических свойств. Начиная с Ga снова меняется внешний электронный слой и резко нарастают неметаллические свойства (Br).

У f-элементов изменяется предпредвнешний электронный слой, поэтому в химическом отношении эти элементы особенно близки. Отсюда – совместное нахождение их в природе, трудности разделения.

Таким образом, в любом периоде ПСЭ наблюдается закономерное, объясняемое с позиции электронного строения, изменение химических свойств элементов (а не простое повторение свойств).

Изменение характера оксидов по периоду (на примере 3 периода).

оксид: Na 2 O MgO Al 2 O 3 SiO 2 P 2 O 5 SO 3 Cl 2 O 7

1444424443 + + +

Н 2 О Н 2 О в Н 2 О нерастворимы 3 Н 2 О Н 2 О Н 2 О

оксида: 2NaOH Mg(OH) 2 ¯ Al 2 O 3 ×3Н 2 Оº2Al(OH) 3 ¯ SiO 2 ×Н 2 ОºH 2 SiO 3 ¯ 2H 3 PO 4 H 2 SO 4 2HClO 4

Al 2 O 3 ×Н 2 Оº2HAlO 2 14444442444443

Свойства: основания кислоты

сильное слабое слабая средней сильная очень

(щелочь) труднораств труднораств силы сильная

Характер

оксида: основной основной амфотерный кисл кисл кисл кисл

Таким образом, в любом периоде характер оксидов (и других однотипных соединений) меняется закономерно: от основного к кислотному через амфотерный.

Амфотерность гидроксида алюминия проявляется в его способности реагировать как с кислотами, так и основаниями: Al 2 O 3 + 6HCl = 2AlCl 3 + 3H 2 O; Al 2 O 3 + 2NaOH = 2NaAlO 2 + H 2 O.

Поскольку оксид кремния непосредственно в воде не растворяется, соответствующая ему кислота может быть получена косвенном путем: Na 2 SiO 3 + H 2 SO 4 = H 2 SiO 3 ¯ + Na 2 SO 4 . Кислотный характер оксида проявляется в реакции со щелочью: SiO 2 + 2NaOH = Na 2 SiO 3 + H 2 O.

Ионизационные потенциалы. Энергия ионизации и сродства к электрон у.

Нейтральные атомы элементов при различных взаимодействиях обладают способностью отдавать или присоединять электроны, превращаясь при этом в положительно- или отрицательнозаряженные ионы.

Способность атомов отдавать электроны характеризуется величиной потенциала ионизации

I (эВ/атом) или энергии ионизации (энтальпии ионизации) DН иониз. (кДж/моль атомов).

Потенциал ионизации – это та энергия, которую необходимо затратить, чтобы отделить электрон от атома (нейтрального, невозбужденного, газообразного) и увести его в бесконечность.

Энергию ионизации определяют путем бомбардировки атомов электронами, ускоренными в электрическом поле. То напряжение поля, при котором скорость электронов достаточна для ионизации атомов, называется ионизационным потенциалом . Ионизационный потенциал численно равен энергии ионизации, выраженной в эВ.

Н – е = Н + , I=13,6 эВ/атом, 1эВ = 1,6.10 -22 кДж, N A = 6,02.10 23

DН иониз. = 13,6 × 1,6.10 -22 × 6,02.10 23 » 1300кДж/моль

Обычно сравниваются только первые потенциалы ионизации, т.е. отрыв первого электрона. Отрыв последующих электронов требует большей энергии, например, для атома Са I 1 I 2 I 3

6,11®11,87® 151,2

По периоду (¾®) потенциал ионизации растет, что связано с уменьшением радиуса атомов.

В подгруппах ПСЭ ионизационные потенциалы изменяются неодинаково. В главных подгруппах потенциал уменьшается сверху вниз, что связано с возрастанием радиуса и эффектом экранирования ядра внутренними устойчивыми оболочками s 2 p 6 . В побочных подгруппах ионизационный потенциал возрастает сверху вниз, поскольку радиус меняется незначительно, а недостороенная оболочка плохо экранирует ядро.

В целом, для металлов характерны малые значения потенциала ионизации , т.е. атомы металлов легко отдают электроны (минимальный потенциал ионизации имеют Cs, Fr), для неметаллов большие значения потенциала ионизации (максимальный у F).

Среди известных элементов больше металлов. Все s- (кроме H, He), d-, f-элементы – металлы. Среди р-элементов металлы: Al, Ga, In, Tl, Sn, Pb, Bi.

Максимальное количество валентных электронов, которые атом может “отдать” при взаимодействии, приобретая при этом максимальную положительную степень окисления, соответствует № группы в ПСЭ.

3 гр. Al 2s 2 2p 6 3s 2 3p 1 -3e ------- Al(+3) 2s 2 2p 6

6 гр. S 2s 2 2p 6 3s 2 3p 4 -6e ------- S(+6) 2s 2 2p 6

6 гр. Cr 3s 2 3p 6 3d 5 4s 1 -2e -----Cr(+2) 3s 2 3p 6 3d 4 -1e ---- Cr(+3) 3s 2 3p 6 3d 3 - 3e ----- Cr(+6) 3s 2 3p 6

ИСКЛЮЧЕНИЕ: F - нет положительной степени окисления

О - максимальная положительная степень окисления +2 в соединении OF 2

Элементы 1 группы п/гр Б Au - максимально +3

Cu, Ag - максимально +2

Элементы 8 группы п/гр Б Co, Ni, Rh, Pd, Ir, Pt

Способность атома присоединять электроны характеризует энергия сродства к электрону

Е (эВ/атом) или энтальпия сродства к электрону DН сродства (кДж/моль) – это та энергия, которая выделяется при присоединении электрона к нейтральному невозбужденному атому с образованием отрицательно заряженного иона.

F 2s 2 2p 5 + e = F - 2s 2 2p 6 + Q

Энергию сродства к электрону измерить непосредственно нельзя. Вычисляют косвенными методами из цикла Борна-Габера.

В целом, неметаллы характеризуются большими значениями Е. В электронной структуре их атомов во внешнем слое 5 и более электронов и до устойчивой восьмиэлектронной конфигурации не хватает 1-3 электронов. Присоединяя электроны, атомы неметаллов приобретают отрицательные степени окисления, например, S (-2), N (-3), O (-2) и т.д. Металлы характеризуются малыми значениями Е. Металлы не имеют отрицательных степеней окисления!

Электроотрицательность . Для того, чтобы решить вопрос о перемещении электрона от одного атома к другому, необходимо учесть обе эти характеристики. Полусумма энергии ионизации и сродства к электрону (по модулю), получила название электроотрицательности (ЭО). Обычно используют не абсолютные значения, а относительные (ОЭО).

За единицу ОЭО берут ЭО атома Li или Са и вычисляют во сколько раз ЭО других элементов больше или меньше выбранного. Очевидно те атомы, которые прочно удерживают свои электроны и легко принимают чужие, должны иметь наибольшие значения ОЭО – это типичные неметаллы - фтор (ОЭО=4), кислород (ОЭО=3,5); у водород а ОЭО=2,1, а у калия - 0,9. По периоду ЭО увеличивается, по главным подгруппам – уменьшается. Металлы имеют малые значения ЭО и легко отдают свои электроны – восстановители. Неметаллы, наоборот, легко принимают электроны – окислители. Значения ОЭО приведены в справочнике. Мы будем их использовать для качественной оценки полярности химической связи.

* Примечание . Используя понятие электроотрицательности надо помнить, что значения ЭО нельзя считать постоянными, т.к. они зависят от степени окисления и от того, с каким атомом взаимодействует данный.

Тема: «Изменение свойств элементов и их соединений в зависимости от положения в Периодической системе»

Тип урока: усвоение новых знаний.

Цели урока:

Обучающая: закрепить знание причины изменения свойств элементов на основании положения в системе; научить обоснованно объяснять и сравнивать свойства элементов, а также образованных ими простых и сложных веществ; научить давать полную характеристику химического элемента в ПСХЭ.

Развивающая: продолжить формирование умений сравнивать, обобщать, прогнозировать и объяснять свойства веществ, устанавливать причинно-следственные связи, делать выводы, уметь выделять главное из общего. Совершенствование коммуникативных умений и информационно-познавательной компетентности, развивать самостоятельность и творчество при решении практических задач.

Воспитательная: воспитание ответственного отношения к учёбе, трудолюбия, работоспособности, правильной самооценки, умение работать в коллективе, осуществление экологического, гигиенического и нравственного воспитания, формирование здорового образа жизни.

Ход урока

    Организационный момент (1 мин)

    Актуализация знаний (10 мин)

Проверка знаний учащихся.

    Порядковый номер показывает…

    Номер периода показывает…

    Номер группы показывает…

    Положение элемента в ПСХЭ (период, группа).

    Строение атома кислорода.

Химический диктант по вариантам : предполагает быструю работу, используя ПСХЭ Д.И. Менделеева.

1. Указать элемент, в атоме которого:

    а) 25 протонов (марганец) б) 13 электронов (алюминий)

    а) 41 протон (ниобий) б) 20 электронов (кальций)

2. Назвать два элемента, в атоме которых:

    три энергетических уровня (любой элемент третьего периода)

    пять энергетических уровней (любой элемент пятого периода)

3. Определить два элемента, в атоме которых на последнем энергетическом уровне:

    4 валентных электронов (любой элемент четвертой группы главной подгруппы)

    7 валентных электронов (любой элемент седьмой группы главной подгруппы)

4. Указать место положения элементов в ПСХЭ: период и группа.

    а) № 37 (рубидий) б) № 30 (цинк)

    а) № 24 (хром) б) № 50 (олово)

5. Привести строение атома с порядковым номером

    14 (кремний 2; 8; 4)

    16 (сера 2; 8; 6)

Проверка.

II. Изучение нового материала (32 мин)

План изложения

1. Причины изменения свойств элементов на основании положения в ПСХЭ:

а) в периодах (малых, больших);

б) группах, главных подгруппах;

2. Изменение свойств химических элементов и образованных ими соединений:

а) в периодах;

б) группах, главных подгруппах.

3. Значение Периодического закона и Периодической системы химических элементов Д.И. Менделеева.

4. План характеристики химического элемента на основании его положения в ПСХЭ.

Формулировка Периодического закона Д. И. Менделеева.

Раздать таблицы!

(20 мин) В чем же причины изменения свойств химических элементов? Каковы причины периодичности? Чтобы ответить на данные вопросы сравним атомы элементов:

а ) Na – Al - P

б ) Na – K - Rb

1. Какой заряд ядра данных атомов, что с ним происходит?

2. Определить количество электронов на внешнем энергетическом уровне. Что наблюдается?

3. Сколько энергетических уровней в атомах данных элементов, что наблюдается?

4. Как Вы считаете, что же происходит с атомным радиусов, вследствие данных изменений?

а) к концу периода;

б) к концу группы, главной подгруппы.

Ответ:

а) к концу периода атомный радиус уменьшается вследствие усиленного взаимопритяжения ядра атома и электронов внешнего энергетического уровня (работа с таблицей).

б) к концу группы, главной подгруппы атомный радиус возрастает т. к. увеличивается количество энергетических уровней в атоме.

5. Сказываются ли такие изменения атомных радиусов в периодах и группах, главных подгруппах на способность атомов отдавать электроны, или их присоединениях?

Энергия ионизации – энергия, необходимая для отрыва слабо связанного электрона от атома.

Металличность – способность легко отдавать электроны.

Неметалличность – способность легко принимать электроны.

Ответ: При уменьшении атомного радиуса ослабевает способность атомов отдавать электроны, усиливается способность принимать электроны. К концу периода атомы элементов легче принимают электроны, что обеспечивает проявление неметалличности. При увеличении атомного радиуса возрастает способность атомов отдавать электроны. К концу группы, главной подгруппы атомы элементов легче отдают электроны, что обеспечивает проявление металличности.

6. Электроотрицательность – способность атомов элементов в соединениях оттягивать на себя электронную плотность. Самый электроотрицательный элемент – фтор.

Элетроотрицательность при движении в периодах слева направо увеличивается, в группах сверху вниз – уменьшается.

7. В чем же причина периодичностного изменения свойств элементов?

Причиной периодичности и является изменение строения внешнего, а также предвнешнего энергетического уровня; повторение числа электронов внешнего (предвнешнего) энергетического уровня.

Периодичность изменения свойств элементов сказывается и на свойствах простых веществ, образованных ими и на свойствах более сложных соединений: оксидов и гидроксидов.

Свойство

По периоду слева направо

По группе сверху вниз

Заряд ядра

Число валентных электронов

Число энергетических уровней

Атомный радиус (самый маленький атомный радиус имеет F фтор)

Энергия ионизации (самая высокая энергия ионизации у Fr франция)

Металлические свойства, восстановительная активность (самый сильный металл - Fr франций)

Неметаллические свойства, окислительная активность (самый сильный неметалл - F фтор)

Электроотрицательность (самый электроотрицательный элемент - F фтор)

Основные свойства оксидов и гидроксидов (относительно Fr франция)

Кислотные свойства оксидов и гидроксидов (относительно F фтора)

На данном уроке мы познакомимся с планом характеристики химического элемента по его положению в ПСХЭ.

В данной характеристике учащиеся показывают свои знания периодического закона Периодической системы и умения ими пользоваться правильно.

(12 мин) План характеристики химического элемента по его положению в ПСХЭ Д.И. Менделеева

1. Название элемента, химический знак, порядковый номер, относительная атомная масса; номер периода (большой или малый), номер группы, подгруппа (главная или побочная).

2. Строение атома элемента:

а) заряд ядра атома; количество протонов, нейтронов в ядре атома; количество электронов в атоме;

б) электронная формула атома и электронно-графическое изображение; семейство s-, р-, d-, f-элементов.

3. Металлический или неметаллический элемент.

4. Высшая валентность.

5. Высший оксид, характер высшего оксида (основный, кислотный, амфотерный); химические свойства высшего оксида (предложить несколько уравнений реакций).

6. Высший гидроксид, характер гидроксида (основание, кислота); химические свойства гидроксида (составить несколько уравнений реакций).

7. Летучее водородное соединение (для неметаллов).

В качестве примера для закрепления учащимися знаний можно предложить характеристики металлического (магния) и неметаллического (серы) элементов.

III. Домашнее задание (2 мин)

    Учить записи в тетради.

    Дидактические материалы стр. 41 вариант 1.

    Дайте характеристика по 7 пунктам элементам с порядковыми номерами: 3, 6.

    Хомченко 6.36, 6.37.

Одним из важнейших законов природы является периодический закон, открытый в 1869 г. Менделеевым, который он сформулировал так: "Свойства простых веществ, также формы и свойства соединений находятся в периодической зависимости от атомных весов элементов".

С развитием квантовой химии периодический закон получил строгое теоретическое обоснование, а с ним и новую формулировку: "Свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от величины зарядов ядер их атомов".

До Менделеева многие пытались систематизировать элементы, наиболее близко подошел Майер (Германия). В 1864 г. в своей книге он привел таблицу, в которой элементы были также расположены в порядке возрастания их атомных масс, но в эту таблицу Майер поместил всего 27 элементов, меньше половины, известных в то время. Заслуга Менделеева, что в его таблице нашлось место не только всем известным элементам, но были оставлены пустые места для еще не открытых элементов (экабор – Sc, экаалюминий – Ga, экасилиций – Ge).

С точки зрения электронного строения атома:

Периодом называют горизонтальную последовательность элементов, начинающуюся со щелочного металла и заканчивающуюся благородным газом с тем же максимальным значением главного квантового числа, равного номеру периода.

Число элементов в периоде определяется емкостью подуровней.

Группой элементов называют вертикальную совокупность элементов, обладающую однотипной электронной конфигурацией и определенным химическим сходством. Номер группы (за исключением I, II, VIII побочных подгрупп) равен сумме валентных электронов.

Кроме деления по периодам (определяемое главным квантовым числом) существует деление на семейства , определяемое орбитальным квантовым числом. Если у элемента заполняется s-подуровень, то s-семейство или s-элемент; p-подуровень – p‑элемент; d-подуровень – d-элемент; f-подуровень – f-элемент.

В короткопериодной форме периодической системы 8 групп, каждая из которых делится на главную и побочную подгруппы. I и II главные подгруппы заполняются s-элементами; III‑VIII главные подгруппы – р-элементами. d-элементы находятся в побочных подгруппах. f-элементы вынесены в отдельные группы.

Таким образом, каждый элемент в периодической системе элементов занимает строго определенное место, которое отмечается порядковым номером и связано со строением электронных оболочек атома.

1.2.1. Закономерности изменения свойств элементов и их соединений по периодам и группам

Экспериментальными исследованиями была установлена зависимость химических и физических свойств элементов от их положения в периодической системе.

Энергией ионизации называется энергия, которую надо затратить для отрыва и удаления электрона от атома, иона или молекулы. Она выражается в Дж или эВ (1эВ=1,6 . 10 -19 Дж).

Энергия ионизации является мерой восстановительной способности атома. Чем ниже значение энергии ионизации, тем выше восстановительная способность атома. Атомы, теряя электрон, превращаются в положительно заряженные ионы.

Сродство к электрону называется энергия, которая выделяется при присоединении электрона к атому, молекуле или радикалу.

Энергия сродства к электрону атомов закономерно изменяется в соответствии с характером электронных структур атомов элементов. В периодах слева направо сродство к электрону и окислительные свойства элементов возрастают. В группах сверху вниз сродство к электрону, как правило, уменьшается.

Галогены отличаются самым высоким сродством к электрону, т.к. присоединяя один электрон к нейтральному атому, она приобретает законченную электронную конфигурацию благородного газа.

Характеристика о том, какой из атомов легче отдает или присоединяет электрон, называется электроотрицательностью которая равна полусумме энергии ионизации и сродства к электрону.

Электроотрицательность возрастает в направлении слева направо для элементов каждого периода и уменьшается в направлении сверху вниз для элементов одной и той же группы ПС.

Атомные и ионные радиусы

Атомы и ионы не имеют строго определенных границ вследствие волновой природы электронов. Поэтому определяют условные радиусы атомов и ионов, связанных друг с другом химической связью в кристаллах.

Радиусы атомов металлов в периодах с ростом порядкового номера элементов уменьшаются , т.к. при одинаковом числе электронных слоев возрастает заряд ядра, а, следовательно, и притяжение им электронов.

В пределах каждой группы элементов, как правило, радиусы атомов увеличиваются сверху вниз , т.к. возрастает число энергетических уровней. Радиусы ионов также находятся в периодической зависимости от порядкового номера элемента.

Пример. Как изменяются размеры атомов внутри периода, при переходе от одного периода к другому и в пределах одной группы? Какие элементы имеют минимальное и максимальное значения размера атома?

Внутри периода (слева направо) размеры атомов уменьшаются, т.к. увеличивается заряд ядра и электроны сильнее притягиваются к ядру. В главных подгруппах размеры атомов увеличиваются, т.к. увеличивается число электронных слоев. В побочных подгруппах такие изменения меньше заметны, за счет d -сжатия, а при переходе из V в VI период происходит даже уменьшение уменьшение размеров атомов за счет f -сжатия.

Согласно этим правилам минимальное значение размера атома имеет гелий , а максимальное – цезий . Франций не имеет долгоживущих изотопов (природный изотоп радиоактивен, период полураспада 21 минута).

Металлы и неметаллы. Деление элементов и простых веществ на металлы и неметаллы в известной степени условно.

По физическим свойствам металлы характеризуются высокой теплопроводностью и электрической проводимостью, отрицательным температурным коэффициентом проводимости, специфическим металлическим блеском, ковкостью, пластичностью и т.п.

По химическим свойствам металлы характеризуются основными свойствами оксидов и гидроксидов и восстановительными свойствами.

Подобные различия в свойствах простых веществ связаны с характером химической связи при их образовании. Металлическая связь в металлах образуется при дефиците валентных электронов, а ковалентная в неметаллах при их достаточном количестве. Исходя из этого, можно провести вертикальную границу между элементами IIIA и IV групп. Слева – элементы с дефицитом валентных электронов, справа – с избытком. Это граница Цинтля.

Пример. Чем отличаются типичные металлы от неметаллов? Почему и как изменяются металлические свойства с увеличением порядкового номера элементов?

В периодической системе элементов в основном находятся металлы, неметаллов немного (всего 22). К металлам относятся все s -элементы. Это связано с наличием у них малого числа валентных электронов (1 или 2), в результате этого дефицита электронов образуется металлическая связь.

Все d - и f -элементы тоже являются металлами. При образовании химических связей в качестве валентных электронов у атомов d -элементов выступают s -электроны внешнего энергетического уровня и часть или все d -электроны предпоследнего уровня, причем d -электроны участвуют в образовании химических связей лишь после того, как будут связаны все внешние s -электроны. Кроме того, легкости удаления s -электронов способствует эффект экранирования заряда ядра. Он состоит в уменьшении воздействия на электрон положительного заряда ядра из-за наличия между рассматриваемым электроном и ядром других электронов (это d - или f -электроны).

У р-элементов происходит конкуренция между увеличением числа валентных электронов (неметаллические свойства) и экранированием заряда ядра (усиливаются металлические свойства). В связи с этим у р-элементов по подгруппе сверху вниз увеличивается устойчивость низших степеней окисления.

По периоду справа налево увеличиваются неметаллические свойства атомов, за счет увеличения заряда ядра атома и трудности отдачи электронов. По подгруппе сверху вниз увеличиваются металлические свойства, т. к. ослабевает связь внешних электронов с ядром.

Свойства соединений подразделяются на кислотно-основные и окислительно-восстановительные. Периодическая система элементов хорошо объясняет эти закономерности. Рассмотрим это на примере гидроксидов.

Если элемент имеет степень окисления маленькую (+1 или +2), например, Na-O-H, то связь Na-O менее прочная, чем O-H и разрыв связи происходит по менее прочной связи.

Na-O-H  Na + + OH - . Соединение обладает основными свойствами.

Если степень окисления элемента большая (от +5 до +7), то связь элемент – кислород прочнее, чем связь О-Н и соединение обладает кислотными свойствами. В азотной кислоте степень окисления азота большая (+5).

H + + NO 3 -

Соединения в степени окисления +3 и +4 проявляют амфотерные свойства, т.е. в зависимости от партнера по реакции могут проявлять как кислотные, так и основные свойства. Но есть исключения Zn +2 , Be +2 , Sn +2 , Pb +2 , Ge +2 имеют степень окисления +2, но являются амфотерными соединениями.

По периоду справа налево увеличивается высшая степень окисления, равная номеру группы, поэтому увеличиваются неметаллические и кислотные свойства .

По подгруппе сверху вниз увеличиваются металлические и основные свойства , т.к. увеличивается размер атома и связь с соседним атомом ослабляется.

Таким образом, периодическая система позволяет проанализировать положение простых веществ в связи с особенностями их свойств (металлы, неметаллы).

Периодический закон Менделеева дает возможность определять и свойства простых веществ в химических соединениях. Впервые предсказание свойств было осуществлено самим Менделеевым. Он рассчитал свойства и тех элементов, которые еще не были открыты.

Лекция: Закономерности изменения свойств элементов и их соединений по периодам и группам


Закон Д.И. Менделеева

Русский ученый Д. И. Менделеев успешно работал во многих областях науки. Однако наибольшую известность ему принесло уникальное открытие периодического закона химических элементов в 1869 г. Изначально, он звучал таким образом: «Свойства всех элементов, а вследствие и качества образуемых ими простых, а также сложных веществ, стоят в периодической зависимости от их атомного веса».

В настоящее время формулировка закона иная. Дело в том, что во времена открытия закона ученые не имели представления о строении атома, а за атомный вес принимался вес химического элемента. Впоследствии активного изучения атома и получения новых сведений о его строении, был выведен закон, имеющий актуальность в наши дни: «Свойства атомов хим. элементов и образованных ими простых веществ в периодической зависимости от зарядов ядер их атомов».

Закон так же выражен графически. Наглядно его изображает таблица:

Периодическая таблица Д.И. Менделеева


На данном уроке мы научимся извлекать из неё важную и нужную для постижения науки информацию. В ней вы видите строки. Это периоды . Всего их семь. Вспомните из предыдущего урока, что номер каждого периода демонстрирует количество энергетических уровней, на которых размещаются электроны атома химического элемента. Например, натрий (Na) и магний (Mg) находятся в третьем периоде, значит их электроны размещены на трех энергетических уровнях. Все периоды, за исключением 1 – го берут начало со щелочного металла, и завершаются благородным газом.

Электронная конфигурация:

    щелочного металла - ns 1 ,

    благородного газа -ns 2 p 6 , за исключением гелия (Не) - 1s 2 .

Где n - является номером периода.

Еще мы видим в таблице вертикальные столбцы – это группы . В одних таблицах вы можете увидеть 18 групп, нумерованных арабскими цифрами. Такая форма таблица называется длинной, она появилась после обнаружения отличий d-элементов от s- и p-элементов. Но традиционной, созданной Менделеевым является короткая форма, где элементы сгруппированы в 8 групп, нумерованных римскими цифрами:


В дальнейшем мы будем пользоваться уже знакомой и привычной для вас короткой таблицей.

Итак, какую информацию нам дают номера групп? Из номера мы узнаем число электронов, образующих химические связи. Они называются валентными . 8 групп подразделены на две подгруппы: главная и побочная.

    В главную входят электроны s- и p-подуровней. Это подгруппы IА, IIА, IIIА, IVА, VА, VIА, VIIА и VIIIА. Например, аллюминий (Al) – элемент главной подгруппы III группы имеет … 3s 2 3p 1 валентных электрона.

    Элементы, располагающиеся в побочных подгруппах, содержат электроны d - подуровня. Побочными являются группы IБ, IIБ, IIIБ, IVБ, VБ, VIБ, VIIБ и VIIIБ. Например, марганец (Mn) – элемент главной подгруппы VII группы имеет …3d 5 4s 2 валентных электрона.

    В короткой таблице s- элементы обозначены красным, p-элементы желтым, d-элементы синим и f-элементы белым цветами.

  • Какую еще информацию мы можем извлечь из таблицы? Вы видите, что каждому элементу присвоен порядковый номер. Тоже не случайно. Судя по номеру элемента, мы можем судить о количестве электронов в атоме данного элемента. К примеру, кальций (Ca) находится под номером 20, значит электронов в его атоме 20.
Но следует помнить, что численность валентных электронов периодически меняется. Связанно это с периодическими изменениями электронных оболочек. Так, при перемещении вниз по подгруппе атомные радиусы всех химических элементов начинают расти. Потому что растет количество электронных слоев. Если же перемещаться горизонтально по одному ряду радиус атома уменьшается. Почему так происходит? А связанно это с тем, что при заполнении одной электронной оболочки атома, происходящем поочередно, ее заряд возрастает. Это приводит к увеличению взаимопритяжения электронов и их сжиманию вокруг ядра.

Еще из таблицы можно сделать и такой вывод, чем выше порядковый номер элемента, тем меньше радиус атома. Почему? Дело в том, что при увеличении общего количества электронов, происходит уменьшение радиуса атома. Чем больше электронов, тем выше энергия их связи с ядром. Например, ядро атома фосфора (Р) намного сильнее удерживает электроны своего внешнего уровня, чем ядро атома натрия (Na), имеющего один электрон на внешнем уровне. И если атомы фосфора и натрия вступят в реакцию, фосфор отберет этот электрон у натрия, потому что фосфор более электроотрицательный. Этот процесс называется электроотрицательностью. Запомните, при движении вправо по одному ряду элементов таблицы их электроотрицательность возрастает, а внутри одной подгруппы она уменьшается. О данном свойстве элементов мы подробнее скажем на следующих уроках.

Запомните:

1. В периодах с увеличением порядкового номера мы можем наблюдать:
  • увеличение ядерного заряда и уменьшение атомного радиуса;
  • увеличение числа внешних электронов;
  • увеличение ионизации и электроотрицательности;
  • возрастание неметаллических окислительных свойств и убывание металлических восстановительных свойств;
  • возрастание кислотности и ослабевание основности гидроксидов и оксидов.
2. В А-группах с увеличением порядкового номера мы можем наблюдать:
  • увеличение ядерного заряда и увеличение атомного радиуса;
  • уменьшение ионизации и электроотрицательности;
  • убывание неметаллических окислительных свойств и возрастание металлических восстановительных свойств;
  • возрастание основности и ослабевание кислотности гидроксидов и оксидов.
Вспомним химическую терминологию:

Ионизация - это процесс превращения атомов в ионы (положительно заряженные катионы или отрицательно заряженные анионы) во время химической реакции.


Электроотрицательность - это способность атома к притягиванию электрона другого атома во время химических реакций.


Окисление - процесс передачи электрона атома восстановителя (донора электрона) атому окислителя (акцептору электрона) и увеличение степени окисления атома вещества.


Существуют три значения степени окисления:
  • при высокой электроотрицательности элемента, он сильнее притягивает к себе электроны и его атомы приобретают отрицательную степень окисления (к примеру, фтор всегда имеет степень окисления - 1);
  • при низкой электроотрицательности, элемент отдает электроны и приобретает положительную степень окисления (все металлы имеют +степень, к примеру, калий +1, кальций +2, алюминий +3);
  • атомы простых веществ, состоящих из одного элемента у атомов с высокими и свободные атому имеют нулевую степень.
Степень окисления ставится над символом элемента: