F Куда (про) давать лишнее электричество?! (варианты). Что такое электричество? Информация о электрическом токе История открытия электричества

позвольте покритиковать.
в современных реалиях электромобиль ущербен с точки зрения экономической целесообразности. и уж тем более в РФ где бенз стоит копейки, а % по кредитам грабительские. на бензе в 3-5 и более раз дешевше ездить.

Перевод электрической энергии напрямую (т.е. через ТЭНы, а не через тепловой насос) в тепловую не целесообразен. хотя это всерьез обсуждается на форуме. видел тут тему про запитку ТЭНов от солнечных батарей.
и уж тем более такой перевод не целесообразен летом когда тепла переизбыток.

Насчет самогона может надо в другом направлении подумать. гнать метанол. и на нём ездить на авто.
но... ну сколько тут наездиишь? в среднем по РФ - 30км в день. это +-7квт механической энергии. слабоват масштаб.
а на лево метанол не очень то попрадаешь ибо лицензируемая деятельность.

Немцы в этом направлении тоже думают. но пока что никаких особых подвижек. один из путей получения метанола - через водород. а водород получают электролизом. но вот беда - из рассейскава газа водород дешевше чем путём электролиза.

Да и сам метанол напрямую из рассейсква то метана опять-таки дешевше. вот такая беда.

Метанол опасный яд. Лучше технический спирт (этанол), крепостью 96,6% и часть 100% (пропуская через негашёную известь). Продаются автомобили позволяющие ездить на бензине и на спирте.
Можно заливать 96,6% в бензогенераторы (перенастроив их), и крепостью 100% до 1/5 части добавлять в бензобак обычных авто без их переделки.
Можно переделать котёл дизельный и отапливаться зимой.
Нужен спец самогонный аппарат непрерывного действия и высокой производительности (причём умеющий за 1 проход получать самогон крепостью 96,6%). Чтобы за 5 часов днём выгонял минимум 20 л тех спирта. потребление энергии в этом случае 4 кВт. Значит солнечных панелей надо 5 - 6 кВт.
Ну а часть этого самогона (т.е. тех спирта в котором примеси ацетона, формальдегидов и сивушных масел - именно последние придают мутность самогону после разбавления водой, т. к. частично выпадают в коллоидный раствор), можно вторично на спиртовой колонне прогнать и получить чистый спирт для водки.
Может мы будем и такие спец аппараты продавать. Это пока разрешено. А вот сам спирт продавать запрещено без лицензии.
Себестоимость по зерну за 1 л спирта 25 руб. Фермерам проще (своё зерно). Но можно гнать из борщевика Сосновского (огромные стебли вдоль дорог). Есть удалённые районы. Для кого-то точно может иметь смысл.
Можно гнать из опилок/сена. Тогда нужен разбавленный до 8% электролит (который продаётся для аккумуляторов) и потом мел, чтобы остатки кислоты удалить после гидролиза. Потом получившийся сахаристый раствор как обычно - с помощью дрозжей перегоняется в 15% раствор спирта, который затем, такой спец самогонный аппарат перегоняет в 96,6% спирт.
Остап Бендер умел гнать самогон из табуретки. Именно этот способ имелся ввиду. Только табуретку надо сначала в опилки покрошить.

Современную жизнь невозможно представить без электричества, этот тип энергии используется человечеством наиболее полно. Однако далеко не все взрослые люди способны вспомнить из школьного курса физики определение электрического тока (это направленный поток протекания элементарных частиц, имеющих заряд), совсем мало кто понимает, что же это такое.

Что такое электричество

Наличие электричества как явления объясняется одним из главных свойств физической материи – способностью обладать электрическим зарядом. Они бывают положительными и отрицательными, при этом объекты, обладающие разнополюсными знаками, притягиваются друг к другу, а «равнозначные», наоборот, отталкиваются. Движущиеся частицы также являются источником возникновения магнитного поля, что лишний раз доказывает связь между электричеством и магнетизмом.

На атомарном уровне существование электричества можно объяснить следующим образом. Молекулы, из которых состоят все тела, содержат атомы, составленные из ядер и электронов, циркулирующих вокруг них. Эти электроны могут при определенных условиях отрываться от «материнских» ядер и переходить на другие орбиты. Вследствие этого некоторые атомы становятся «недоукомплектованными» электронами, а у некоторых их в избытке.

Поскольку природа электронов такова, что они текут туда, где их не хватает, постоянное перемещение электронов от одного вещества к другому и составляет электрический ток (от слова «течь»). Известно, что электричество имеет направление от полюса «минус» к полюсу «плюс». Поэтому вещество с нехваткой электронов считается заряженным положительно, а с переизбытком – отрицательно, и именуется оно «ионами». Если речь идет о контактах электрических проводов, то положительно заряженный называется «нулевой», а отрицательно – «фаза».

В разных веществах расстояние между атомами различно. Если они очень маленькие, электронные оболочки буквально касаются друг друга, поэтому электроны легко и быстро переходят от одного ядра к другому и обратно, чем создается движение электрического тока. Такие вещества, например, как металлы, называются проводниками.

В других веществах межатомные расстояния относительно велики, поэтому они являются диэлектриками, т.е. не проводят электричество. Прежде всего, это резина.

Дополнительная информация . При испускании ядрами вещества электронов и их движении происходит образование энергии, которая прогревает проводник. Такое свойство электричества называется «мощность», измеряется она в ваттах. Также эту энергию можно преобразовывать в световую или другой вид.

Для непрерывного течения электричества по сети потенциалы на конечных точках проводников (от линий ЛЭП до домовой электропроводки) должны быть разными.

История открытия электричества

Что такое электричество, откуда оно берется, и прочие его характеристики фундаментально изучает наука термодинамика с сопредельными науками: квантовой термодинамикой и электроникой.

Сказать, что какой-либо ученый изобрел электрический ток, было бы неверным, ибо с древних времен много исследователей и ученых занимались его изучением. Сам термин «электричество» ввел в обиход греческий ученый-математик Фалес, это слово означает «янтарь», поскольку именно в опытах с янтарной палочкой и шерстью Фалесу получилось выработать статическое электричество и описать это явление.

Римлянин Плиний также занимался исследованием электрических свойств смолы, а Аристотель изучал электрических угрей.

В более позднее время первым, кто досконально стал изучать свойства электрического тока, стал В. Жильбер, врач английской королевы. Немецкий бургомистр из Магдебурга О.ф Герике считается создателем первой лампочки из натертого серного шарика. А великий Ньютон вывел доказательство существования статического электричества.

В самом начале 18 века английский физик С. Грей поделил вещества на проводники и непроводники, а голландским учёным Питером ван Мушенбруком была изобретена лейденская банка, способная накапливать электрический заряд, т. е. это был первый конденсатор. Американский ученый и политический деятель Б. Франклин впервые в научных терминах вывел теорию электричества.

Все 18 столетие было богатым на открытия в сфере электричества: установлена электрическая природа молнии, сконструировано искусственное магнитное поле, выявлено существование двух видов зарядов («плюс» и «минус») и, как следствие, двух полюсов (естествоиспытатель из США Р. Симмер), Кулоном открыт закон взаимодействия между точечными электрозарядами.

В следующем веке изобретены батарейки (итальянский ученый Вольта), дуговая лампа (англичанин Дейви), а также прототип первой динамо-машины. 1820 год считается годом зарождения электродинамической науки, сделал это француз Ампер, за что его имя присвоили единице для показаний силы электротока, а шотландец Максвелл вывел световую теорию электромагнетизма. Россиянин Лодыгин изобрел лампу накаливания, имеющую стержень из угля, – прародитель современных лампочек. Чуть более ста лет назад была изобретена неоновая лампа (французский ученый Жорж Клод).

И по сей день исследования и открытия в области электричества продолжаются, например, теория квантовой электродинамики и взаимодействия слабых электрических волн. Среди всех ученых, занимавшихся исследованием электричества, особое место принадлежит Николе Тесла –многие его изобретения и теории о том, как работает электричество, до сих пор не оценены по достоинству.

Природное электричество

Долгое время считалось, что электричества «самого по себе» не существует в природе. Это заблуждение развеял Б. Франклин, который доказал электрическую природу молний. Именно они, по одной из версий ученых, способствовали синтезу первых аминокислот на Земле.

Внутри живых организмов также вырабатывается электричество, которое порождает нервные импульсы, обеспечивающие двигательные, дыхательные и другие жизненно необходимые функции.

Интересно. Многие ученые считают человеческое тело автономной электрической системой, которая наделена функциями саморегуляции.

У представителей животного мира тоже имеется свое электричество. Например, некоторые породы рыб (угри, миноги, скаты, удильщики и другие) используют его для защиты, охоты, добывания пищи и ориентации в подводном пространстве. Особый орган в теле этих рыб вырабатывает электроэнергию и накапливает ее, как в конденсаторе, его частота – сотни герц, а напряжение – 4-5 вольт.

Получение и использование электричества

Электричество в наше время – это основа комфортной жизни, поэтому человечество нуждается в его постоянной выработке. Для этих целей возводятся различного рода электростанции (гидроэлектростанции, тепловые, атомные, ветровые, приливные и солнечные), способные с помощью генераторов вырабатывать мегаватты электричества. В основе этого процесса лежит преобразование механической (энергия падающей воды на ГЭС), тепловой (сжигание углеродного топлива – каменного и бурого угля, торфа на ТЭЦ) или межатомной энергии (атомного распада радиоактивных урана и плутония на АЭС) в электрическую.

Много научных исследований посвящено электрическим силам Земли, все они стремятся использовать атмосферное электричество для блага человечества – выработки электроэнергии.

Учеными предложено множество любопытных устройств генераторов тока, которые дают возможность добывать электричество из магнита. Они используют способности постоянных магнитов совершать полезную работу в виде крутящего момента. Он возникает в результате отталкивания между одноименно заряженными магнитными полями на статорном и роторном устройствах.

Электричество популярнее всех остальных источников энергии, поскольку обладает множеством преимуществ:

  • легкое перемещение до потребителя;
  • быстрый перевод в тепловой или механический вид энергии;
  • возможны новые области его применения (электромобили);
  • открытие все новых свойств (сверхпроводимость).

Электричество – это движение разнозаряженных ионов внутри проводника. Это большой подарок от природы, который люди познают с давних времен, и процесс этот еще не закончен, хотя человечество уже научилось добывать его в огромных объемах. Электричество играет огромную роль в развитии современного общества. Можно сказать, что без него жизнь большинства наших современников просто остановится, ведь недаром при отключении электричества люди говорят, что «отключили свет».

Видео

Или электрическим током называют направленно движущийся поток заряженных частиц, например электронов. Также электричеством называется энергия, получаемая в результате такого движения заряженных частиц, и освещение, которое получают на основе этой энергии. Термин «электричество» был введён английским учёным Уильямом Гилбертом в 1600 году в его сочинении «О магните, магнитных телах и о большом магните-Земле».

Гилберт проводил опыты с янтарём, который в результате трения о сукно получил возможность притягивать другие лёгкие тела, то есть приобрёл некий заряд. А так как янтарь переводится с греческого как электрон, то наблюдаемое ученым явление получило название «электричество».

Электрический ток

Немного теории об электричестве

Электричество способно создавать вокруг проводников электрического тока или заряженных тел электрическое поле. Посредством электрического поля можно оказывать воздействие на другие тела, обладающие электрическим зарядом.fv

Электрические заряды, как всем известно, делятся на положительные и отрицательные. Этот выбор является условным, однако из-за того, что он уже давно сделан исторически, то только поэтому за каждым зарядом закреплён определённый знак.

Тела, которые заряжены одним видом знака, отталкиваются друг от друга, а которые имеют разные заряды-наоборот притягиваются.

Во время движения заряженных частиц, то есть существования электричества, также помимо электрического поля возникает и магнитное поле. Это позволяет установить родство между электричеством и магнетизмом .

Интересно, что существуют тела, которые проводят электрический ток или тела с очень большим сопротивлением.. Это было открыто английским учёным Стивеном Греем в 1729 году.

Изучением электричества, наиболее полно и фундаментально, занимается такая наука, как термодинамика. Однако квантовые свойства электромагнитных полей и заряженных частиц изучаются уже совсем другой наукойm – квантовой термодинамикой, однако некоторую часть квантовых явлений можно довольно просто объяснить обычными квантовыми теориями.

Основы электричества

История открытия электричества

Для начала необходимо сказать, что нет такого учёного, который может считаться открывателем электричества, так как с древнейших времен до наших дней многие учёные изучают его свойства и узнают что-то новое об электричестве.

  • Первым, кто заинтересовался электричеством, был древнегреческий философ Фалес. Он обнаружил, что янтарь, который потереть о шерсть приобретает свойство притягивать другие лёгкие тела.
  • Затем другой древнегреческий ученый Аристотель занимался изучением некоторых угрей, которые поражали врагов, как мы теперь знаем, электрическим разрядом.
  • В 70 году нашей эры римский писатель Плиний изучал электрические свойства смолы.
  • Однако затем долгое время об электричестве не было получено никаких знаний.
  • И только в 16 веке придворный врач английской королевы Елизаветы 1 Вильям Жильбер занялся изучением электрических свойств и сделал ряд интересных открытий. После этого началось буквально «электрическое помешательство».
  • Только в 1600 году появился термин «электричество», введённый английским ученым Уильямом Гилбертом.
  • В 1650 году, благодаря бургомистру Магдебурга Отто фон Герике, который изобрёл электростатическую машину, появилась возможность наблюдать эффект отталкивания тел под действием электричества.
  • В 1729 году английский учёный Стивен Грей, проводя опыты по передачи электрического тока на расстояние, случайно обнаружил, что не все материалы обладают свойством одинаково передавать электричество.
  • В 1733 году французский ученый Шарль Дюфе открыл существование двух типов электричества, которые он назвал стеклянным и смоляным. Эти названия они получили из-за того, что выявлялись при трении стекла о шёлк и смолы о шерсть.
  • Первый конденсатор, то есть накопитель электричества, изобрёл голландец Питер ванн Мушенбрук в 1745 году. Этот конденсатор получил название Лейденская банка.
  • В 1747 году американец Б.Франклин создал первую в мире теорию электричества. По франклину электричество – это нематериальная жидкость или флюид. Другая заслуга Франклина перед наукой заключается в том, что он изобрёл громоотвод и с помощью него доказал, что молния имеет электрическую природу возникновения. Также он ввёл такие понятия как положительный и отрицательный заряды, но не открывал заряды. Это открытие сделал учёный Симмер, который доказал существование полюсов зарядов: положительного и отрицательного.
  • Изучение свойств электричества перешло к точным наукам после того как в 1785 году Кулон открыл закон о силе взаимодействия, происходящей между точечными электрическими зарядами, который получил название Закон Кулона.
  • Затем, в 1791 году итальянский учёный Гальвани публикует трактат о том, что в мышцах животных, при их движении возникает электрический ток.
  • Изобретение батареи другим итальянским учёным – Вольтом в 1800, привело к бурному развитию науки об электричестве и к последовавшему ряду важных открытий в этой области.
  • Затем последовали открытия Фарадея, Максвелла и Ампера, которые произошли всего за 20 лет.
  • В 1874 году российский инженер А.Н.Лодыгин получил патент, на изобретённую в 1872 году лампу накаливания с угольным стержнем. Затем в лампе стал использоваться стержень из вольфрама. А в 1906 году он продал свой патент компании Томаса Эдисона.
  • В 1888 году Герц регистрирует электромагнитные волны.
  • В 1879 году Джозеф Томсон открывает электрон, который является материальным носителем электричества.
  • В 1911 году француз Жорж Клод изобрёл первую в мире неоновую лампу.
  • Двадцатый век дал миру теорию Квантовой электродинамики.
  • В 1967 году был сделан еще один шаг на пути изучения свойств электричества. В этом году была создана теория электрослабых взаимодействий.

Однако это только основные открытия, сделанные учёными, и способствовавшие применению электричества. Но исследования продолжаются и сейчас, и каждый год происходят открытия в области электричества.

Все уверенны что самым великим и могущественным в плане открытий связанных с электричеством, был Никола Тесла. Сам он родился в Австрийской империи, теперь это территория Хорватии. В его багаже изобретений и научных работ: переменный ток, теория полей, эфир, радио, резонанс и многое другое. Некоторые допускают возможность что явление “Тунгусского метеорита”, это ни что иное как работа рук самого Николы Теслы, а именно взрыв огромной мощности на территории Сибири.

Властелин мира - Никола Тесла

Какое-то время считалось, что электричество в природе не существует. Однако после того как Б.Франклин установил, что молнии имеют электрическую природу возникновения, это мнение перестало существовать.

Значение электричества в природе, как и в жизни человека достаточно огромно. Ведь именно молнии привели к синтезу аминокислот и, следовательно, к появлению жизни на земле .

Процессы в нервной системе человека и животных, например, движение и дыхание, происходят благодаря нервному импульсу, который возникает из-за электричества, существующего в тканях живых существ.

Некоторые виды рыб использую электричество, а точнее электрические разряды для защиты от врагов, поиска пищи под водой и её добывания. Такими рыбами являются: угри, миноги, электрические скаты и даже некоторые акулы. Все эти рыбы имеют специальный электрический орган, который работает по принципу конденсатора, то есть накапливает достаточно большой электрический заряд, а затем разряжает его на жертву, прикоснувшуюся к такой рыбе. Также такой орган работает с частотой в несколько сотен герц и имеет напряжение несколько вольт. Сила тока электрического органа рыб меняется с возрастом: чем старше становится рыба, тем сила тока больше. Также благодаря электрическому току рыбы, обитающие на большой глубине, ориентируются в воде. Электрическое поле искажается под действие предметов, находящихся в воде. А эти искажения и помогают рыбам ориентироваться.

Смертельные опыты. Электричество

Получение электричества

Для получения электричества были специально созданы электростанции. На электростанциях при помощи генераторов, создается электроэнергия, которая после передается в места потребления по линиям электропередач. Электрический ток создается благодаря переходу механической или внутренней энергии в электрическую энергию. Электростанции делятся на: гидроэлектростанции или ГЭС, тепловые атомные, ветровые, приливные, солнечные и другие электростанции.

В гидроэлектростанциях турбины генератора, движущиеся под действием потока воды, вырабатывают электрический ток. В тепловых электростанциях или по-другому ТЭЦ электрический ток образуется также, но только вместо воды используется водяной пар, возникающий в процессе нагрева воды при сгорании топлива, например, угля.

Очень похожий принцип работы используется в атомной станции или АЭС. Только в АЭС используется другой вид топлива – радиоактивные материалы, например, уран или плутоний. Происходит деление их ядер, благодаря чему выделяется очень большое количество теплоты, используемое для нагревания воды и превращения её в водяной пар, который затем поступает в турбину, вырабатывающую электрический ток. Для работы таких станций требуется очень мало топлива. Так десять граммов урана вырабатывает такое же количество электричества, как и вагон угля.

Использование электричества

В наше время жизнь без электричества становится невозможной. Оно достаточно плотно вошло в жизнь людей двадцать первого века. Часто электричество используют для освещения, например, используя электрическую или неоновую лампу, и для передачи всевозможной информации с помощью телефона, телевидения и радио, а в прошлом и телеграфа. Также еще в двадцатом веке появилась новая область применения электричества: источник питания электрических двигателей трамваев, поездов в метро, троллейбусов и электричек. Электричество необходимо для работы различных бытовых приборов, которые значительно улучшают жизнь современного человека.

Сегодня электричество также применяется для получения качественных материалов и их обработки. С помощью электрогитар, работающих благодаря электричеству, можно создавать музыку. Также электричество продолжает использоваться, как гуманный способ умерщвления преступников (электрический стул), в странах, в которых разрешена смертная казнь.

Также учитывая то, что жизнь современного человека становится практически невозможной без компьютеров и сотовых телефонов, для работы которых необходимо электричество, то важность электричества будет достаточно сложно переоценить.

Электричество в мифологии и искусстве

В мифологии почти всех народов есть боги, которые способны метать молнии, то есть умеющие использовать электричество. Например, у греков таким богом был Зевс, у индусов-Агни, который умел превращаться в молнию, у славян – это Перун, а у скандинавских народов-Тор.

В мультфильмах также есть электричество. Так в диснеевском мультфильме Черный плащ есть антигерой Мегавольт, который способен повелевать электричеством. В японской анимации электричеством владеет покемон Пикачу.

Заключение

Изучение свойств электричества началось ещё в глубокой древности и продолжается до сих пор. Узнав, основные свойства электричества и, научившись их правильно использовать, люди значительно облегчили свою жизнь. Электричество также используется на заводах, фабриках и тд., то есть с помощью него можно получать другие блага. Значение электричества, как в природе, так и в жизни современного человека огромно. Без такого электрического явления как молния на земле не зародилась бы жизнь, а без нервных импульсов, возникающих также благодаря электричеству, не возможно было бы обеспечить согласованную работу между всеми частями организмов.

Люди всегда были благодарны электричеству, даже когда не знали об его существовании. Они наделяли своих главных богов возможностью метать молнии.

Современный человек также не забывает об электричестве, но возможно ли о нем забыть? Он наделяет электрическими способностями героев мультфильмов и фильмов, строит электростанции, чтобы получать электричество и делает многое другое.

Таким образом, электричество величайший дар, данный нам самой природой и которым мы, к счастью, научились пользоваться.

Для стабильной жизни нашего мегаполиса необходима энергия, равная 100 млн. кВт\час в сутки, а в год это составляет около 38 млрд. кВт\часов. Кто и что обеспечивает Москву электроэнергией? На Раушской набережной находится ГЭС №1 (самая старая электростанция столицы), которая не только является памятником по охраной Юнеско, но и вырабатывает электроэнергию для снабжения Государственной Думы, Кремля, Лубянской площади и метрополитена. Номинальная мощность станции - 86 МВт. Станция была построена по указу императора Александра III для подключения электричества к первым трамваям. За 114 лет существования ГЭС-1 её мощность возросла в 10 раз.
Основным источником электроснабжения Москвы являются ТЭЦ, в количестве 15 единиц.

Ещё одной особенностью электроснабжения Москвы - является Московское энергетическое кольцо образовано высоковольтными линиями электропередачи (напряжение 500 кВ) и группой мощнейших подстанций (ПС) , расположенных как в черте города, так и в Московской области. Основная задача этих узловых подстанций — понижение напряжения с 500 до 220 и 110 кВ и передача его на узловые распределительные подстанции.

Это упорядоченное движение определенных заряженных частиц. Для того чтобы грамотно использовать весь потенциал электричества, необходимо четко понимать все принципы устройства и работы электрического тока. Итак, давайте разберемся, что же такое работа и мощность тока.

Откуда вообще берется электрический ток?

Несмотря на кажущуюся простоту вопроса, немногие способны дать на него вразумительный ответ. Конечно, в наши дни, когда технологии развиваются с неимоверной скоростью, человек особо не задумывается о таких элементарных вещах, как принцип действия электрического тока. Откуда берется электричество? Наверняка многие ответят "Ну, из розетки, ясное дело" или же просто пожмут плечами. А между тем, очень важно понимать, как происходит работа тока. Это следует знать не только ученым, но и людям, никак не связанным с миром наук, для их же всеобщего разностороннего развития. А вот уметь грамотно использовать принцип работы тока под силу не каждому.

Итак, для начала следует понять, что электричество не возникает ниоткуда: его вырабатывают специальные генераторы, которые находятся на различных электростанциях. Благодаря работе вращения лопастей турбин паром, полученным в результате нагрева воды углями или нефтью, возникает энергия, которая впоследствии с помощью генератора превращается в электричество. Генератор устроен очень просто: в центре устройства находится огромный и очень сильный магнит, который заставляет электрические заряды двигаться по медным проводам.

Каким образом электрический ток доходит до наших домов?

После того как с помощью энергии (тепловой или ядерной) было получено определенное количество электрического тока, его можно подавать людям. Работает такая подача электричества следующим образом: чтобы электричество успешно дошло до всех квартир и предприятий, его нужно "подтолкнуть". А для этого потребуется увеличить силу, которая и будет это делать. Она называется напряжением электрического тока. Принцип действия выглядит так: ток проходит через трансформатор, который увеличивает его напряжение. Далее электрический ток идет по кабелям, установленным глубоко под землей или же на высоте (ибо напряжение порой достигает 10000 Вольт, что является смертельно опасным для человека). Когда ток добирается до места своего назначения, он снова должен пройти через трансформатор, который теперь уже уменьшит его напряжение. Затем он проходит по проводам к установленным щитам в многоквартирных домах или других зданиях.

Проведенное через провода электричество можно использовать благодаря системе розеток, подключая к ним бытовые приборы. В стенах же проводятся дополнительные провода, через которые течет электрический ток, и благодаря именно ему работает освещение и вся техника в доме.

Что такое работа тока?

Энергия, которую несет в себе электрический ток, с течением времени преобразуется в световую или же тепловую. Например, когда мы включаем лампу, электрический вид энергии превращается в световую.

Если говорить доступным языком, то работа тока - это то действие, которое произвело само электричество. При этом ее можно очень легко подсчитать по формуле. Исходя из закона о сохранении энергии, можем сделать вывод, что электрическая энергия не пропала, она полностью или частично перешла в другой вид, отдав при этом определенное количество теплоты. Эта теплота и есть работа тока, когда он проходит по проводнику и нагревает его (происходит теплообмен). Так выглядит формула Джоуля-Ленца: A = Q = U*I*t (работа равна количеству теплоты или же произведению мощности тока на время, за которое он протекал по проводнику).

Что означает постоянный ток?

Электрический ток бывает двух видов: переменный и постоянный. Они различаются тем, что последний не меняет своего направления, он имеет два зажима (положительный "+" и отрицательный "-") и начинает свое движение всегда из "+". А переменный ток имеет две клеммы - фазу и ноль. Именно из-за наличия одной фазы на конце проводника, его называют также однофазным.

Принципы устройства однофазного переменного и постоянного электрического тока абсолютно разные: в отличие от постоянного, переменный меняет и свое направление (образуя поток как из фазы в направлении к нулю, так из нуля по направлению к фазе), и свою величину. Так, например, переменный ток периодически меняет значение своего заряда. Получается, что при частоте 50 Гц (50 колебаний в секунду) электроны меняют направление своего движения ровно 100 раз.

Где используется постоянный ток?

Постоянный электрический ток обладает некоторыми особенностями. Ввиду того, что он течет строго по одному направлению, его сложнее трансформировать. Источниками постоянного тока можно считать следующие элементы:

  • аккумуляторы (как щелочные, так и кислотные);
  • обычные батарейки, используемые в мелких приборах;
  • а также различные устройства типа преобразователей.

Работа постоянного тока

Каковы его главные характеристики? Это работа и мощность тока, причем оба эти понятия очень тесно связаны друг с другом. Мощность подразумевает под собой скорость работы в единицу времени (за 1 с). По закону Джоуля-Ленца получаем, что работа постоянного электрического тока равна произведению силы самого тока, напряжения и времени, в течение которого была совершена работа электрического поля по переносу зарядов вдоль проводника.

Так выглядит формула по нахождению работы тока с учетом закона Ома о сопротивлении в проводниках: A = I 2 *R*t (работа равна квадрату силы тока умноженному на значение сопротивления проводника и еще раз умноженному на значение времени, за которое совершалась работа).